APPENDIX F

RIVERBANK ARMOR ELEVATION BACKUP

Appendix F

Riverbank Armor Height: Riparian Vegetation Approach

Objective

To prevent scour of the riverbank and mobilization of contaminated sediments.

Conceptual Approach

After riverbank soils are removed, banks will be revegetated using native species. Once plants or seeds are installed, there will be a period when plants are getting established (e.g., root development, ground cover) and the soil surface is prone to scour. During this period erosion control blankets will be utilized to prevent scour. The rate of plant establishment varies depending on the species, planting stock, plant maintenance, channel geometries, weather, soil, disease, and flooding, but generally will range from 1-3 years.

Riparian vegetation communities capable of providing scour resistance typically begin at some level up the bank slope. The specific elevation depends on the flood frequency and associated hydraulic characteristics (e.g., shear stress, scour resistance), plant species (e.g., tolerances to flooding), channel geometries, and bank soil types. Along a given riverbank slope, the transition from relatively unvegetated to vegetated varies for each river system but typically occurs at an elevation associated with flood events between the 1- to 3-year frequency. The specific flood frequency depends on the watershed, channel, and climatic characteristics and is called the bankfull event.

Assuming no other bank erosion process (e.g., slumping) is occurring and erosion blankets were installed below the elevation of the bankfull event (i.e., from the riverbed to the 1-yr event), they would initially provide short-term scour resistance. However, as the blankets deteriorated (2 - 4 years) they would begin to loose scour resistance and subsequently cause bank instability. Hence, to provide long-term scour resistance some type of armor is needed below bankfull elevation.

At river stages above bankfull, riparian vegetation becomes established within the life of the erosion blanket and then plant colonization provides the needed scour resistance over the long-term. The key design element for this stabilization approach depends on identification of the bankfull elevation.

Bankfull elevation

Field measurements taken during the aquatic habitat survey in July 2000 and HEC-RAS model results were utilized to estimate bankfull elevation. Channel measurements were collected from seven transects within the first reach of the 1.5-mile reach. The survey was conducted during low flow conditions (34 - 38 cfs) and bankfull elevations were measured at each transect using a stadia rod. The primary bankfull indicator used was a change in vegetation (e.g., from bare soil to grasses, herbs, and shrubs). From the low flow water surface, the average stage increase to

bankfull was 2.2 ft. Because the vegetation transition was not always well defined, we recommend a more conservative estimate of 2.5 ft be used.

The HEC-RAS model showed the stage elevation of 40 cfs is approximately 971 ft. With the addition of the stage increase to bankfull (2.5 ft), bankfull elevation would be approximately **973.5 ft**. This would also be the top-of-the-bank armor elevation.

Assumptions

The armor height determination is based on the following assumptions:

- (1) Critical transition is between bank armor and revegetation areas. Assumes that bioengineering methods (i.e., vegetated geogrids) have a higher scour resistance than straight revegetation methods (i.e., erosion blanket).
- (2) Shear stress along the riverbank is greatest at the river bottom and decreases upslope. Average shear stress at the 10-yr event (design flood) ranges from 0.20 to 0.33 lbs/sf. (Based on HEC-RAS results; HC 1/01)
- (3) Average channel velocity is greatest in the center of the channel near the surface and decreases towards the bed and the bank. Maximum channel velocity at this event ranges from 5.0 to 6.0 ft/s. (Based on HEC-RAS results; HC 1/01). Maximum channel velocity along the bank is estimated at 2.0 to 2.5 ft/s.
- (4) The erosion blanket we are proposing is 100% coir with the following range of manufacturer specifications: max velocity 10 15 ft/s and shear stresses of 2.3 to 3.0 lbs/sf. These blankets are estimated to last 2 4 years with the assumption that herbaceous and woody vegetation will become established during decay and provide the needed soil protection afterwards
- (5) Using a conservative factor of safety of 3.0 to account for pulses/localized maximums (Fischenich and Allen, 2000), manufacturer estimates for erosion blanket specifications, and HEC-RAS assumptions, the maximum bank shear stress and velocity are approximately 1.0 lbs/sf and 7.5 ft/s, respectively. These conditions are below specifications listed for the erosion blanket.
- (6) Armor elevation is based solely on scour of revegetation areas. Additional analyses are also needed to fully assess and determine the bank armor elevation. These include a geotechnical analysis for slope stability, a more detailed assessment of the shear stress and velocity distribution along the riverbank, and an assessment of scour due to ice flows and woody debris.

www.nortorowser.com

MEMORANDUM

DRAFT CONFIDENTIAL - FOIA EXEMPT

Arichorag

DATE: March 9, 2001

J-7385-05

TO:

Hydraulics Focus Group

FROM: Shane Cherry

SUBJECT TO REVISION

RE:

Top of Armor Elevation

Chicag

CC:

Denve

As part of the proposed clean up action, the riverbed and river banks will be restored and reinforced to protect against future scour and bank erosion. The previously recommended conceptual approach to bank armoring involves a combination of riprap armor, soil bioengineering, and vegetation. Both the effectiveness and the cost of this approach are sensitive to the elevation that defines the top of armor where riprap transitions to soil bioengineering or vegetation. Therefore the determination of this elevation is important and must be based on a compelling rationale.

Fairbank

Jersey Crt

Hart Crowser modeled the hydraulic conditions within the design reach using HEC-RAS. The hydraulic analysis provides a quantitative description of the flow velocities, flow depths, and boundary shear stress values throughout the design reach associated with floods ranging from the 1-year flood to the 100-year flood. Using the results of the hydraulic analysis, Hart Crowser determined an appropriate riprap size and gradation for placement within the riverbed and along the riverbanks. In parallel with the riprap analysis, and in cooperation with Woodlot Alternatives, Inc., Hart Crowser determined that bioengineering and vegetation would be adequate to protect against scour within the range of predicted shear stresses and velocities along the riverbanks down to the bank toe.

Јипеа

Long Beac

The establishment and persistence of thriving, living plants is essential to ensure the effectiveness of any soil bioengineering method. In addition to appropriately fitting the hydraulic conditions (velocity, depth, shear stress), the plants that form the bioengineering installations must be able to establish and persist under the anticipated hydrologic conditions (frequency and duration of inundation). On almost any river or stream one can observe a line of vegetation along the

Pontan

Five Centerpointe Drive, Suite 240 Lake Oswego, Oregon 97035-8652 Fax 503,620,6918 Tel 503,620,7284

Housatonic SSERC – Hyraulics Focus Group March 9, 2001

J-7385-05 Page 2

riverbank that corresponds to the edge of the active river channel. Such a line is readily observed along the Housatonic River within and adjacent to the design reach. Established vegetation persists above this line. Vegetation will rarely establish below this line, and when it does it is transitory and often dies or gets washed away. The vegetation line, along with other morphological features, is often used to identify the "bankfull channel", and it typically corresponds approximately to the 1.5-year flood water surface elevation.

Hart Crowser recommends that the top of armor elevation be placed at elevation 975 ft corresponding approximately to the 1.5-year flood water surface elevation. Bioengineering is not appropriate for installation below this elevation because plant material installed below this elevation may be subject to increased mortality. Plant mortality would compromise the integrity of bioengineering structures and reduce their effectiveness in protecting against scour and bank erosion.

Top of Armor.doc

APPENDIX G

SUMMARY TABLES OF PROPOSED RIVERBANK GRADES AND STABILIZATION METHOD

Proposed Riverbank Grades and Stabilization Method [Woodlot Alternatives 7/7/01]:

					West Bank						East Bank		Estimated Station Impacts	
Station	Bank	Armor		Slope Above	e Bank Armor		Bank	Armor	s	lope Above	Bank Armor		Excavation	FSC
	Existing Grade (H:1V)	Proposed Grade (H:1V)	Existing Grade (H:1V)	Proposed Grade (H:1V)	Stabilization	Comments	Existing Grade (H:1V)	Proposed Grade (H:1V)	Existing Grade (H:1V)	Proposed Grade (H:1V)	Stabilization	- Comments	Increase	Change
500+00	*1.6	1.6	*1.6; flat	1.6; flat	Rock Armor	Drainage feature present? Grade change occurs at 500+15 (armor to soil transition); decrease grade to 2.5:1 (limit of excavation increase will be needed).	NA		NA		Rock Armor			
500+50	1.6	1.8	*2.1	2.5	Revegetation	Decrease bank armor grade (Geotech). Increase in limit of excavation needed (3.1 ft).	NA		NA		Bioengineering		х	1
501+00	2.0	2.0	2; 4	2.9	Revegetation	Decrease revegetation grade (Construction).	NA		NA		Bioengineering		Х	ı
501+50	1.7	1.8	2; *7.8	2.8	Revegetation	Decrease bank armor grade (Geotech) and revegetation grade (Construction).	NA		NA		Bioengineering		Х	Į
502+00	2.9	3.0	2.5; 10	3.0	Revegetation	Decrease bank armor and revegetation grade (Construction).	NA		NA		Bioengineering	Undisturbed bank portion between end of bioengineering and Sta 502+50. Check tie in.	Х	ı
502+50	2.4	2.4	2.7; 11.1	2.7; 11.1	Revegetation	Composite slope.	1.3	1.5	*1.3; flat	2.7	Revegetation	Decrease bank armor grade (CENAE). Decrease revegetation grade (Construction/Geotech).		
503+00	2.0	2.0	*4	3.6	Revegetation	Increase revegetation grade (Construction).	0.8	1.5	0.9; 6.3	2.0	Revegetation	Decrease bank armor grade (CENAE/Geotech). Increase in limit of excavation needed (0.5 ft).		
503+50	2.4	2.4	2.3; 10.6	2.5	Revegetation		1.1	1.5	1.3; 8.0	2.0; 8.0	Revegetation	Decrease bank armor grade (CENAE/Geotech). Composite revegetation slope.		
504+10	1.5	2.0	2; flat	2.5	Revegetation	Decrease bank armor and revegetation grade (Geotech). Outfall present @ STA 504+00; Station moved downstream to be more representative.	NA	NA			None	Drainage Swale Outlet	Х	I
504+50	1.9	2.3	1.8; 4	2.3	Revegetation.	Decrease bank armor and revegetation grade (Geotech).	*1.8	1.8	*2.9	2.9	Revegetation		Х	1
505+00	1.2	2.3	2.3	2.3	Revegetation	Decrease bank armor grade (Geotech). Small pool gets partially filled.	1.8	1.8	0.8; 1.3; flat	2.0	Revegetation	Increase in limit of excavation needed (1.7 ft).	х	
505+50	1.8	2.3	1.9	2.3	Revegetation	Decrease bank armor and revegetation grade (Geotech). Increase in limit of excavation needed (2.0 ft).	1.7	1.7	1.5; 28.7; 2.0	2.0; flat; 2.2	Revegetation	Decrease revegetation grade (Restoration/Construction). Composite revegetation slope.	х	
506+00	1.0	2.0	1; 4	2.8	Revegetation	Decrease bank armor and revegetation grade (Geotech/Construction).	1.8	1.8	*2.0; 22.4	2.1;22.4	Revegetation	Composite revegetation slope.		D
506+50	1.5	2	1.5; flat	2.4	Revegetation	Decrease bank armor and revegetation grade (Geotech).	1.3	1.5	7.4; 2.4; flat; 1.8; 4.0	7.4; 2.4; flat; 2.5	Revegetation	Decrease bank armor grade (CENAE). Composite revegetation slope (Construction).		
507+00	2.1	2.2	*3.0	3.0	Revegetation	Revegetation ends at STA 507 + 10.	0.9	1.5	0.8; 4:1; flat; -10.0; 2; 13.8	2.0; flat; 2.0; flat	Revegetation	Decrease bank armor grade (CENAE). Composite revegetation slope.		
507+50 (outfall)	0.3	NA	0.5; *6.3	NA	Rock armor	Design completed by Hart Crowser, Inc. Fill proposed.	0.9	1.5	1.0; *3.4; - flat; 1.8; flat	2.6; flat; 2.0; flat	Revegetation	Decrease bank armor grade (CENAE). Composite revegetation slope.		D
508+00	0.8	2.2	2.5; flat	2.2	Rock armor	Decrease bank armor grade (Geotech). Increase in limit of excavation needed (1.4 ft). Entire riverbank slope is armor.	2.0	2.0	0.8; 8.0; *3; *flat; 2.4	3.0; 7.8; flat; 2.4	Revegetation	Top-of-bank armor reduced to 973.5 feet elevatior (Restoration). Composite revegetation slope (Construction).	Х	I
508+50	1.2	2.2	1.0	2.2	Rock armor	Decrease bank armor grade (Geotech). Increase in limit of excavation needed (6.0 ft). Entire riverbank slope is armor.	5.4	5.4	4.5; 6.2; 3.9	4.5; 6.2; 3.9	Revegetation	Top-of-bank armor reduced to 973.5 feet elevation (Restoration).	х	D
		1		1	1	L		1		1	ı		u	

MK01|O:\20121001.103\FINAL BOD APPENDICES F TO J 022802.DOC

					West Bank						East Bank		Estimated Station Impacts	
Station	Bank	Armor	S	Slope Above	Bank Armor		Bank	Armor	s	lope Above	Bank Armor		Excavation	FSC
	Existing Grade (H:1V)	Proposed Grade (H:1V)	Existing Grade (H:1V)	Proposed Grade (H:1V)	Stabilization	Comments	Existing Grade (H:1V)	Proposed Grade (H:1V)	Existing Grade (H:1V)	Proposed Grade (H:1V)	Stabilization	Comments	Increase	Change
509+00	0.5	2.2	0.5; flat	2.2	Rock armor	Decrease bank armor grade (Geotech). Increase in limit of excavation needed (5.6 ft). Entire riverbank slope is armor.	4.5	4.5	4.3; -6.0; 4.8; 1.5	4.3; flat; 6.6; 2.0	Revegetation	Top-of-bank armor reduced to 973.5 feet elevatior (Restoration). Composite revegetation slope (Construction/Geotech).	Х	I
509+50	2.1	2.2	NA	2.2	Rock armor	Limit of excavation currently below 975 ft elevation. Increase in limit of excavation needed (9.3 ft). Riverbank all armor. Decrease grade (Geotech).	3.9	3.9	*3.0; flat; 1.0; 3.3; flat	2.9; flat; 3.4	Revegetation	Decrease revegetation grade (Construction/Restoration). Composite revegetation slope.		
510+00	2.3	2.2	NA	2.2	Rock armor	Limit of excavation currently at 975 ft elevation. Rock armor ends at STA 510 + 25. Increase in limit of excavation needed (4.9 ft).	2.3	2.3	2.3; 4.0; flat	2.7; flat	Revegetation	Decrease revegetation slope (Construction). Composite revegetation slope.	Х	I
510+50	*2.2	2.2	2.5	2.5	Revegetation	Small portion for revegetation (~ 3 ft slope length) – consider boundary extension?	1.0	2.0	1.0; -8.0; 10.0; 4.0	4.7	Revegetation	Decrease bank armor grade (Geotech/Restoration). Change in revegetation slope (Construction).	х	ı
511+00	1.6	1.8	*2.6; flat	2.6; flat	Revegetation	Composite revegetation slope.	4.3	4.3	7.7; *2.9	7.7; 2.9	Revegetation	Composite revegetation slope.		
511+50	1.8	1.8	1.8; 6.0	2.5	Revegetation	Decrease revegetation grade (Construction).	1.5	2.0	*3.0	3.0	Revegetation	Decrease bank armor grade (Geotech).		
512+00	2.0	2.2	2.0; *4.0	2.9	Revegetation	Decreased bank armor and revegetation grades (Construction/Restoration/Geotech).	0.4	1.7	0.4; *1.8; flat	2.2	Revegetation	Decrease bank armor grade (Geotech).	Х	
512+50	1.8	1.8	*14.6; 3.4	14.6; 3.4	Revegetation	Composite revegetation slope.	1.2	1.7	1.3; 9.0	2.5	Revegetation	Decrease bank armor grade (Geotech).	x	
513+00	1.8	2.2	6.0; *flat	6.1; flat	Revegetation	Extra excavation to compensate fill at Sta 513+00 East Bank. Estimated so overall station X-area remained constant. Decreased bank armor and revegetation grades (Restoration/Construction).	0.8	1.7	0.8; 4.0	1.8; 4.8	Bioengineering (3 soil lifts)	Decrease bank armor grade (Geotech). Use rock swale for first 5.0 ft to tie in upstream end of soil lifts. All soil lifts from Sta 513+00 to 514+00 are approximately same grade (Restoration).	Х	
513+50	*5.8	5.8	*5.4; *2.5; 8.3	6.2; 3.3	Revegetation	Extra excavation to compensate fill at Sta 513+50 East Bank. Estimated so overall station X-area remained constant. Composite revegetation slope (Construction/Restoration). Top-of-bank armor reduced to 973.5 feet elevation (Restoration).	0.8	1.7	1.0; 1.5; 4.0	1.8; 2.8	Bioengineering (3 soil lifts)	Decrease bank armor grade (Geotech).	х	
514+00	3.6	3.6	6.5; *3.4	6.0; 3.4	Revegetation	Top-of-bank armor reduced to 973.5 feet elevation (Restoration). Composite revegetation slope.	5.0; *1.0	1.7	1.6; *1.3	1.8; 2.0	Bioengineering (4 soil lifts)	Decrease bank armor grade (Geotech/Construction). Add one additional soil lift. Bioengineering ends at STA 513+95. Use rock swale to tie bioengineering into bank (513+95 to 514). Swale could also be used for flood drainage from overland flow. Increase in limit of excavation needed (3.2 ft).	Х	

Notes

- (1) Bank slope lengths and grades based on R.F. Weston 2000 topography.
- (2) Assumed that bank armor elevation (975 feet) remains constant in this reach, except where noted.
- (3) Designations a, b, c, and d refer to subsections of a composite slope. "a" starts at top of bank armor and "d" is the last subsection near top of bank.
- (4) "*" indicates that two slopes were lumped into one slope (slight grade changes between them).
- (5) Bank armor elevation lowered to 973.5 ft in a few locations because bank slopes are relatively flat (<3:1), and these stations are located in the inside of a channel bend where sediment transport is expected to be depositional and velocities and shear stresses are expected to be relatively lower than the main channel. The objectives are to lower armor costs and increase the revegetation area.
- (6) Design Comments: "CENAE Guideline" refers to recommendation by Don Wood (Corps) on 4/4/01 regarding maximum acceptable bank armor grades (i.e., 1.5:1). "Geotech" refers to maximum slope grade based on stability analysis conducted by Hart Crowser Inc. (L. Jen 4/4/01).

 "Restoration" refers to changes needed to meet restoration needs (e.g., armor grade transitions between stations, compensation needed to maintain flood storage capacity, or needs for bioengineering construction/design such as horizontal length of soil lift). "Construction" refers to the needs to reconstruct restoration slope efficiently (e.g., reducing the number of slope grades).
- (7) FSC refers to Flood Storage Capacity (Estimated change: I = Increase, D = Decrease).
- (8) Rock armor is proposed for the hard structure design from Sta 508+00 to 510+00. The existing bank armor will be extended above 975 ft elevation. Design slopes based on geotechnical assessment (i.e., Hart Crowser, Inc. slope stability analysis (L.Jen 4/12/01)). Objectives for restoration included maintaining a constant grade (i.e., 2.2:1) and a relative constant elevation (i.e., 978 to 977 ft) through these stations.

MK01|O:\20121001.103\FINAL BOD APPENDICES F TO J 022802.DOC

Proposed Riverbank Grades and Stabilization Method - Drainage Swale

(Reach 1; 1 1/2-Mile Reach; GE/Housatonic River Site; Pittsfield, MA)

DRAFT CONFIDENTIAL, FOIA Exempt [April 17, 2001, Woodlot Alternatives, Inc. (ws/kh)]

Station			Bank	Armor			Comments	Exist	ing Restoration (above armor)	Slope	Morphology	Propo	sed Restoration (above armor)	Slope	Slope Adjustment Proposed Stabilization		Comments
		Exis	sting		Prop	osed		Slope Leg	Grade (H:1V)	Slope Length (ft)		Bank Height (ft)	Slope Length (ft)	Proposed Grade (H:1V)			
	Toe Elev (ft)	Height (ft)	Horizontal Length (ft)		Slope Length (ft)	Proposed Grade (H:1V)											
North Bank				•					•			11					•
0+50	970	5	12.9	2.6	13.9	2.6	Fill needed. Regrade slope.	а	1.7	7.9	Run	3.8	8.4	2.0	Excavation needed. Composite slope	Revegetation	Approximate equal fill and excavation.
					i !			b	-3.1	4.3		2.4	4.4	-3.1	(small berm present on top of bank).		
1+00	972	2.9	7.7	*2.7	8.8	2.7		а	3.7	9.90	Run	2.5	9.5	3.8		Revegetation	
1+50	971	3.3	13.1	4.0	14.2	3.4		а	*3.0	10.00	Run	3.1	10	3.1	Excavation needed. Regrade slope to 3:1	Revegetation	
South Bank			<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
0+50	970	5	11.3	*2.3	12.5	2.3	Excavation and fill needed.	a	4.5	2.5	Run	4.8	13	2.5	Excavation needed. Regrade slope to 2.5:1	Revegetation	
					; !			b	1.1	6.2							
					<u> </u>			С	15.8	6.0							
1+00	972	3.1	6	1.9	5.9	1.9	Fill needed.	a	2.1	17.3	Run	7.7	17.3	2.1		Revegetation	
1+50	971	4	8.3	2.1	8.8	2.1		a	2.5	18.5	Run	9.3	20.6	2.0		Revegetation	
					!			b	flat	2.5							

MK01|O:\20121001.103\FINAL BOD APPENDICES F TO J 022802.DOC 11/1/04

Notes:

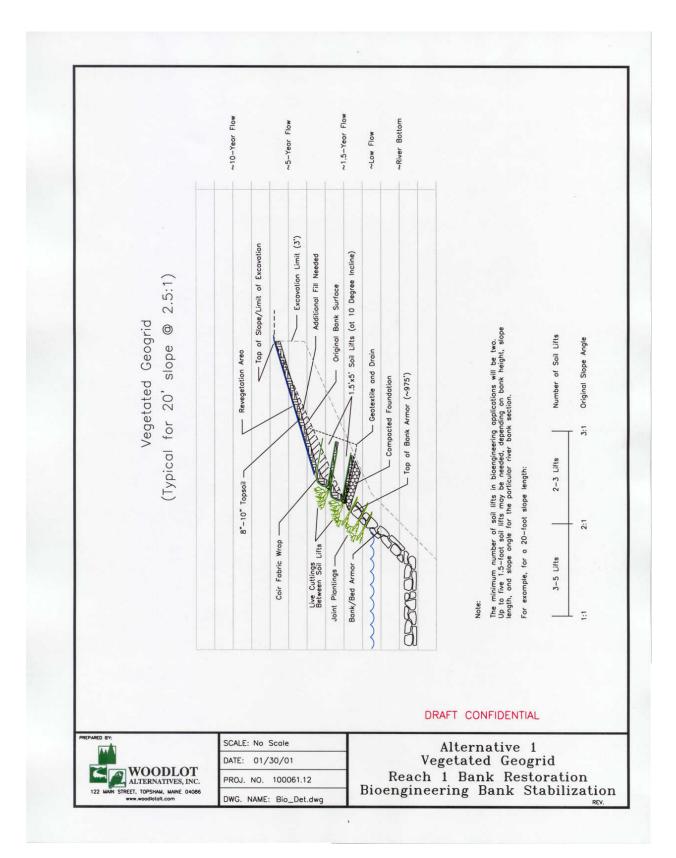
(1) Bank slope lengths and grades based on R.F. Weston 2000 topography.

(2) Assumed that bank armor elevation (975 feet) remains constant in this reach.

(3) Designations a, b, c, and d refer to subsections of a composite slope. "a" starts at top of bank armor and "d" is the last subsection near top of bank

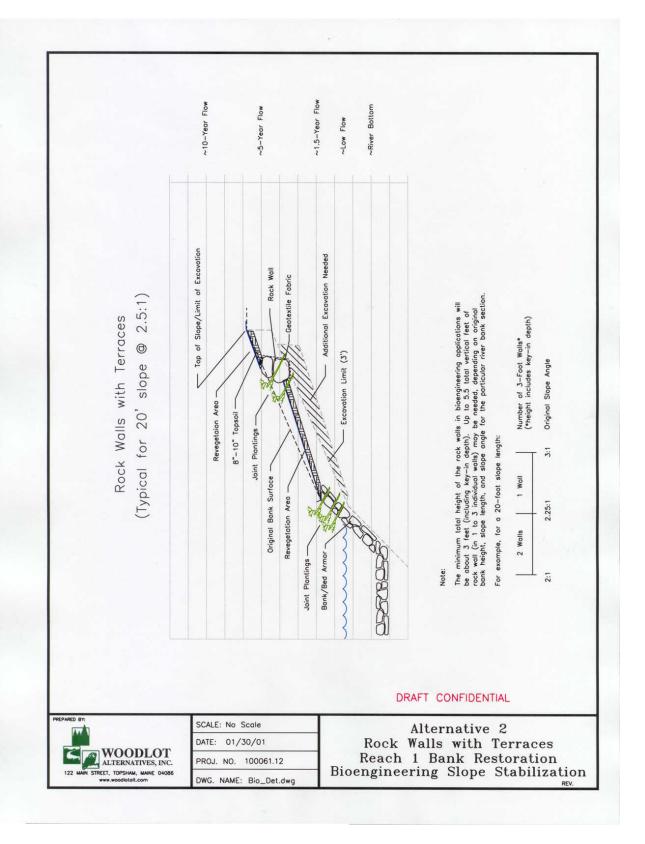
(4) "*" indicates that two or more slopes were lumped into one slope (slight grade changes between them).

APPENDIX H

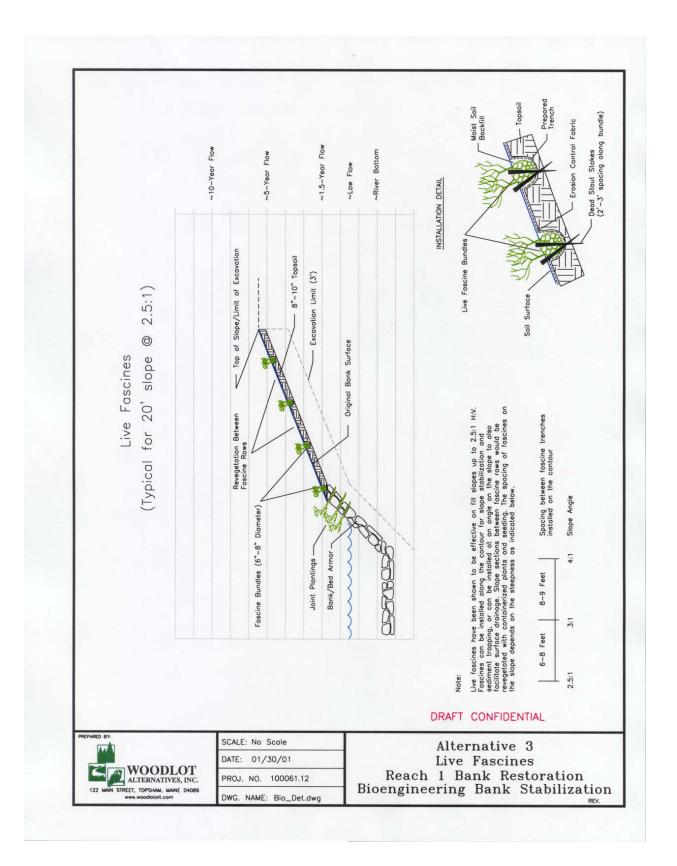

DESIGN CONSIDERATIONS OF BIOENGINEERING METHODS

Relative comparison of design factors for each bioengineering alternative [Woodlot Alternatives, Inc 4/2/01]:

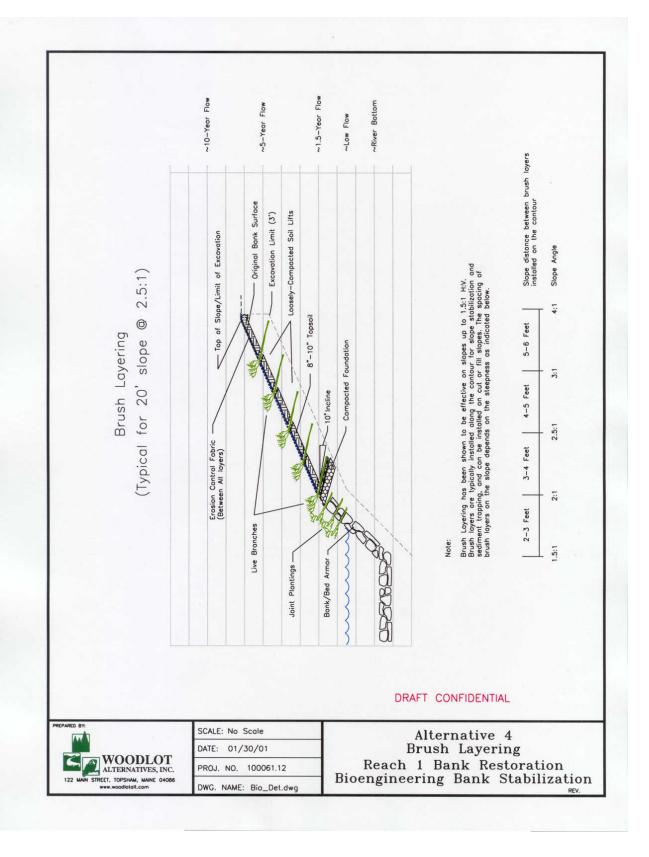
Factor	Vegetated Geogrid ¹	Rock Wall Terraces ²	Live Fascines	Brush Layers	Brush Mattress
Relative Cost ³	\$415/lf	\$415/lf	\$311/lf	\$422/lf	\$360/lf
Maximum Slope Applicability	1:1	2.25:1	2.5:1	1.5:1	2:1
Additional Cut or Fill	Fill	Cut	No Change	No Change	No Change
Initial Slope Stability	High	High	Moderate	Moderate	Moderate
Long-term Stability	High	High	High	High	High
Complexity for Construction	High	High	Low	High	Moderate
Labor/Time	High	High	Moderate	Moderate	Moderate
Training Needed	High	High	Moderate	Moderate	Moderate
Maintenance	Low	Low	Low	Low	Low
Ease of Replanting	Moderate	Easy	Easy	Moderate	Moderate
Construction Schedule Flexibility	High	High	High	Low	Low
Plant Contract Complexity	Moderate	Moderate	Moderate	Moderate	Moderate
Installation Period ⁴	Year-round	Year-round	Nov-May	Nov-May	Nov-May
Ease of Merging with Other Structures	Varies	Complex	Easy	Varies	Easy


Note:

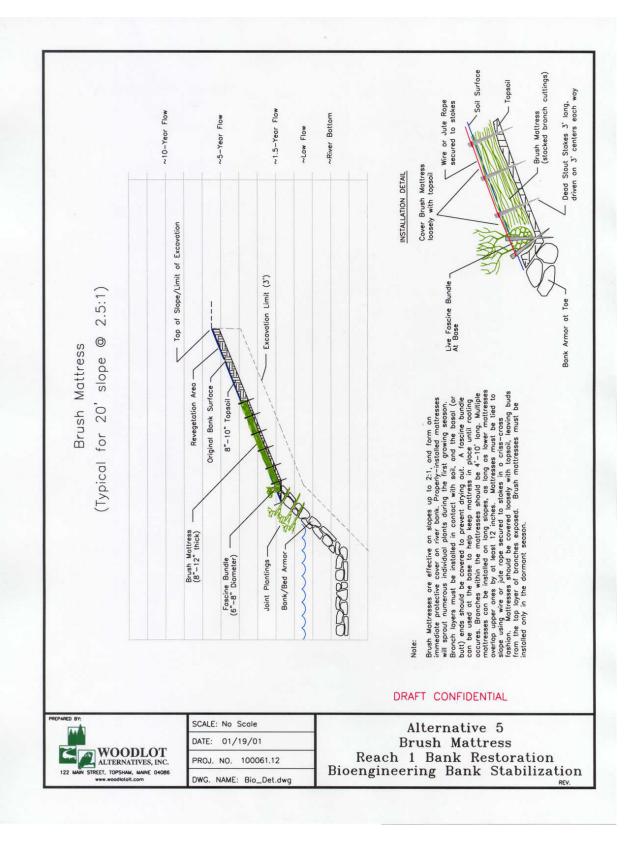
- 1. Relative cost estimate for vegetated geogrid is based on using two vegetated geogrids (i.e., soil lifts). If three geogrids are used, the cost increases to approximately \$500/lf.
- 2. Relative cost estimate for rock wall terraces is based on using one 3-foot wall. If two 3-foot walls are used, the cost increases to approximately \$620/If.
- 3. Relative cost estimates are based on the best available information and include costs of topsoil, plants, fill, materials, equipment, transportation, and labor. Costs presented are based on a typical bank configuration for a 50-foot section of bank (one side only), with a slope length of 20 feet, a slope of 2.5 H: 1V, and a total area of 1,000 square feet.
- 4. Installation period for geogrids and rock terraces assumes cuttings would be used Nov-April and containerized plants would be used April -Nov. Total plant costs include propagation, storage, handling, and installation, and are approximately the same for cuttings and containerized plants.


Vegetated Geogrid

- Can be installed on slopes up to 1H:1V.
- The soil lifts have a relatively high initial tolerance (2-4 years) of scour from flow velocity before the installed plants stabilize the slope.
- Requires stable foundation and bank toe support, and may require additional fill depending on existing grades.
- Plants in soil lifts provide or enhance slope drainage and help establish riparian vegetation community.
- Allows use of dormant cuttings between November and April.
- Containerized plants would be required during the growing season, April Nov.
- Geogrids could be constructed any time of the year.
- Total costs for cuttings and containerized plants are approximately equal when storage, handling, shipping, and installation are considered.
- Refrigeration could also be used to extend construction period for cuttings but survivorship may be low
- Labor intensive to install, needs a skilled crew.
- Fabric can be natural (coir) or synthetic geotextile. Synthetics last longer but not as natural in appearance.
- Long-term slope stability depends on cutting and containerized plant establishment.
- Can be merged with other structures.
- Can be replanted but would require live stakes and/or containerized plants, which may cause some local geogrid instability.
- If cuttings are used plant diversity decreases. Only limited species are applicable for the given site conditions.
- "Rooted socks" could also be used but may add construction complexity (storage, planting dates unknown) and have limited success in other areas of western Massachusetts.


Rock Walls with Terraces

- Boulders (1-3 ft diameter) would be installed on the slope to form low (2-3 feet high) retaining walls and shallow (< 3H:1V) terraces.
- One or two low walls would be needed, depending on the slope length and angle.
- Geotextile and soil compaction measures needed.
- May be a stability problem if rocks are not properly keyed in or anchored to the slope (key in depth approximately 1.5 to 2 feet).
- Requires a source of angular rock/boulders 1-3 feet in diameter. May increase shipping costs.
- Dormant cuttings and/or containerized plants can be used between boulders within the wall.
- Could be constructed anytime of the year.
- Requires skilled crew to build wall.
- Installation for cuttings should occur between November to April.
- Containerized plants would be required during the growing season (April to Nov).
- To maintain 3-foot fill over the excavation limit, some additional excavation is required, which increases remediation costs.
- May be more difficult to merge with other bank stabilization measures (e.g., a slope with terraces to a uniform grade slope).
- Can be easily replanted if needed.
- May be used in areas where terraces currently exist and mimic natural floodplain geomorphology.
- If installed properly should provide long-term site stability with low maintenance.

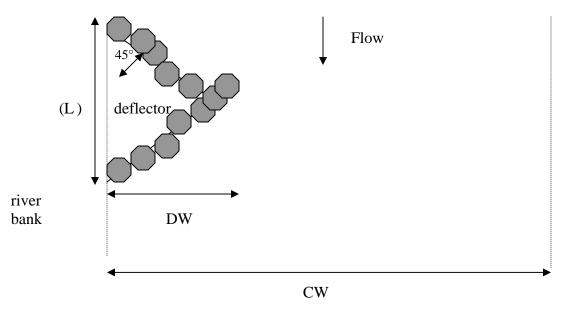

Live Fascines

- Installed along the slope parallel to river, can provide dam-like trapping of sediments from bank surface erosion.
- Does not immediately protect slopes from flow velocities.
- Often installed in combination with erosion blankets to protect soil in between fascines.
- For site conditions (fill slopes with 3 ft of fill) they are appropriate on slopes less than 2.5H:1V.
- Requires a minimum amount of soil disturbance to install.
- Needs to be installed during dormant seasons unless refrigerated storage is available.
- Requires large amount of live cuttings. Storage needed.
- Installation of dormant cuttings occurs between November and April.
- Can be installed after banks have been reconstructed but trenches need to be dug prior to erosion blanket installation.
- Cuttings limited to narrow range of species (2-3) for the given site conditions and review of stabilization experiences in western Massachusetts.
- Containerized plants and seeding installed between rows of fascines to increase species diversity.
- Trained labor needed to install.
- Number of rows of fascines inversely proportional to steepness of slope.
- Long-term slope stability depends on fascine and containerized plant establishment.
- Can be easily replanted if needed.
- Relatively inexpensive.

Brush Layering

- Similar to vegetated geogrid but does not provide as much immediate protection from scouring at higher flows.
- Typically appropriate for slopes less than 2H:1V.
- Requires large amounts of live plant materials and labor to install.
- Limited to dormant seasons unless refrigerated storage is available.
- Provides some initial protection from higher flows and surface erosion (<3 years) by adding bank roughness/trapping of sediments.
- Depends on vegetation establishment from cuttings for long-term bank erosion.
- Installation of dormant cuttings occurs between November and April.
- Cuttings limited to narrow range of species (2-3) for the given site conditions and review of stabilization experiences in western Massachusetts
- Trained labor needed to install.
- Number of rows inversely proportional to steepness of slope.
- Long-term slope stability depends on brush layer and containerized plant establishment.
- Difficult to replant if needed.

Brush Mattress


- Forms an immediate, protective cover over the streambank.
- Typically appropriate for slopes less than 2H:1H.
- Requires large amounts of live plant materials and labor to install.
- Limited to dormant seasons unless refrigerated storage is available.
- Depends on vegetation establishment from cuttings for long-term bank erosion.
- Installation of dormant cuttings and/or rooted plants occurs between November and April.
- Cuttings limited to narrow range of species (2-3) for the given site conditions and review of stabilization experiences in western Massachusetts
- Relatively simple design.
- Containerized plants and seeding installed above the brush mattress to increase species diversity.
- Trained labor needed to install.
- Length of mattress proportional to steepness of slope.
- Long-term slope stability depends on brush layer and containerized plant establishment.
- Requires equipment to replant.

APPENDIX I

DESIGN CALCULATIONS FOR WING DEFLECTORS

Single Wing Deflector Calculations

[Woodlot Alternatives Inc., 12/29/01]

= Boulders (2 to 2.5 ft dia)

For rock sizes within the deflector see Sheet 20.

- (1) Effective deflector width (DW) = 0.3 * Low-flow channel width (CW)[0.3 was used to limit backwater effects while meeting restoration objectives (Fischenich (2001a)].
- (2) Deflector width and length:
- Average CW = 62.5 ft DW ~ 20 ft@ STA 504 to 507 Deflector length (L) = $(20 \text{ ft} - 3 \text{ ft}) * 2 = \sim 35 \text{ ft}$
- @ STA 510 to 514 Average CW = $59.0 \text{ ft} \longrightarrow DW \sim 18 \text{ ft}$ Deflector length (L) = $(18 \text{ ft} - 3 \text{ ft}) * 2 = \sim 30 \text{ ft}$

[Low-flow channel widths determined from field measurements (Woodlot Alternatives (2000)]

APPENDIX J

BOULDER STABILITY CALCULATIONS

BOULDER STABILITY ASSESSMENT

[Woodlot Alternatives, Inc (2/15/02)]

A. Critical Shear Velocity Approach (Fischenich and Allen, 2000)

(1) HEC-RAS Results (Hart Crowser 3/01)

Assume Elm Street Bridge in not re-constructed Avg shear stress (τ_{avg}) and velocity @ design flood (Q_{10} = 4375 cfs) Occurs @ STA 502:

Avg Vel=
$$6.5 \text{ ft/s}$$

 $\tau_{avg} = 0.4 \text{ lbs/ft}^2$

(2) Calculate critical shear velocity (V*c)

Assume
$$\tau_{\text{max}} = 3 * \tau_{\text{avg}}$$
; Using $\tau_{\text{avg}} = 0.4 \text{ lbs/ft}^2$; $\tau_{\text{max}} = 1.2 \text{ lbs/ft}^2$

 $V*c = (gRs)^{1/2}$ where g is the acceleration of gravity 32.2 ft/sec²; R is the hydraulic radius; S is slope (friction)

 $\tau = \gamma Rs$ where γ is the specific weight of water 62.3 lbs/ft³

solving for R; R= τ/γ s and substituting into critical velocity equation: $V_*c = (g\tau/\gamma)^{1/2} = [(32.3 \text{ ft/sec}^2*1.2 \text{ lbs/ft}^2)/62.4 \text{ lbs/ft}^3]^{1/2}$ $V_*c = 0.8 \text{ ft/s}$

Using Table 2.9 of Fischenich and Allen (2000) Diameter of stable rock (d_{stable})= 3.0 in (approx) =>small cobble

(3) Assume Factor of Safety of 2.0

$$V*c = 0.8$$
 ft/sec * 2 = 1.6 ft/sec [Use Table 2.9] $d_{stable} \sim 12$ in (small boulder)

Therefore, boulder sizes proposed for the final design are 2.5 ft diameter (min), which is larger than the minimum size estimated above, and would be stable at the design flood.

Note: Another method to determine boulder stability would be to use Table 7.7 (Fischenich and Allen, 2000), which estimates the threshold critical velocity and critical shear stresses that would be needed to move various sediment sizes. This method essentially yields similar results as the above analysis because both Table 2.9 and 7.7 are based on the same principles (i.e., the forces acting on the boulder). For example, boulders used in the final design have average diameters of 2.5 ft or greater and to move this size would require a critical shear stress of approximately 10 lbs/ft² (Table 7.7) or a critical shear velocity of approximately 2.4 ft/sec (Table 2.9). The critical shear velocity calculated above is less than this value and, therefore, this boulder size would be stable.

APPENDIX K

WING DEFLECTOR SCOUR ANALYSES

Wing Deflector Scour Analyses

[Hart Crowser, Inc; 7/9/01]

Table K-1 Analysis of Rock Deflector as Bend

Input Storm Year 0.5-yr

Rock Deflectors			
Station 503+50		TK =1	TK=1.5
Velocity	5.23	5	5.23
Flow Depth	5.9	6	5.9
D30		0.36	0.32
D100		9"	9"

Assessment of Riprap Size	Rock
	Deflectors
Side Slope	5
Bend Radius	100
Water Surface Width	60
Layer Thickness (xD100)	1
Unit Weight of Stone	165
Safety Factor	1.1
Station Start	500+00
Station End	514+00

Notes:

- 1. For Rock Deflectors, worst case was assumed to be the station which had the highest velocity and lowest depth for storms between 0.5- and 2-yr return period.
- 2. Bend radius and water surface width estimated between rock deflectors
- 3. Side slope of 5:1 at rock deflector assumed because scour potential would be on bed in vicinity of deflector.
- 4. D30 calculated from Riprap 15 program. D100 chosen from Table 3-1, EM-1110-2-1601 (USACE, 1994), assuming that the D30 of the riprap gradation > D30 calculated.

Table K-2 Contraction Scour Through Rock Deflectors

Parame	ter	Storm	Interval	
		0.125-yr	0.25-yr	.5-yr
Upstream flow stage ¹		972.9	974.6	975.7
Channel Invert		969.4	969.4	969.4
Upstream flow depth ²	y1	3.5	5.2	6.3
Upstream flow width ³	W1	87	93	96
Flow width through constriction ⁴	W2	62	68	71
Representative Grain Size	D30	111	111	111
Shear stress⁵		0.09	0.12	0.14
Critical shear stress ⁶		1	1	1
	Bc/B	0.7	0.7	0.7
	Tc/T	11.1	8.3	7.1
	∆z/h	-0.52	-0.47	-0.44
Scour Depth ⁷	Δz	-1.8	-2.5	-2.8

Notes

Parameters were chosen from HEC-RAS analysis of current conditions to represent worst-case conditions in reach where rock deflectors were to be placed (stations 503+00 to 507+00 & 510+00 to 513+50).

- 1. Maximum stage (ft) estimated from station 503+00
- 2. Flow depth (ft) = Upstream stage Channel Invert at station 503+00
- 3. Width (ft) = Top Width at station 503+00
- 4. Constricted width (ft) assumes deflectors extend 25 feet into flow. Constricted Width =Width 25 feet
- 5. Maximum shear stress (lb/ft²) estimated from station 503+50
- 6. Critical shear stress (lb/ft²) estimated from Table X-3 Incipient Motion Conditions
- 7. Scour Depth (ft) calculated based on the Gill Equation (Gill, 1972)

Gill Equation

 $\Delta z/h = ((Bc/B)^{(-6/7)*}((Bc/B)^{(-2/3)*}(1-\tau c/\tau)+\tau c/\tau)^{(-3/7)-1})$

 $\Delta z = contraction scour depth$

h = approach water depth

Bc = constricted channel width

B = approach channel width

 τc = critical shear stress

 τ = shear stress (obtained from HEC-RAS analysis)

Predicted scour <0 suggest that scour is unlikely.

Flows greater than the 0.5-year were not evaluated. It was assumed that this equation did not correctly represent conditions at higher flows because it assumes all flow passes through the constriction. It was assumed that at higher flows the deflectors acted more as roughness elements than constrictions.

Table K-3 Incipient Motion Conditions

Critical Shear Stress Calculation

Unit G	rain					Tcritica	al Botto	m		Tcritical Si	de Slopes	1	AVERAGE (CRITICAL
	S	ize	ф	θ	S and H	Lane(F	ig. 7.7)	Shields		S and H	Lane	Shields	SHEAR STR	RESS
					Tc	Тс				Тс	Тс		BOTTOM	SIDES
						fines	clear	Тс				Тс		
mm	ft		fig 7.16		lb/ft2	lb/ft2	lb/ft2	lb/ft2	K	lb/ft2	lb/ft2	lb/ft2		
	0.1	3.3E-04	0.49	0.46	0.003	0.08	0.02	0.002	0.104	0.0003	0.0052	0.000	0.026	0.002
	1	3.3E-03	0.51	0.46	0.012	0.09	0.03	0.016	0.167	0.0021	0.0100	0.003	0.037	7 0.005
	10	3.3E-02	0.56	0.46	0.203	0.25	0.15	0.159	0.322	0.0652	0.0644	0.051	0.190	0.060
	25	8.2E-02	0.57	0.46	0.507	0.5	0.4	0.397	0.350	0.2042	0.1576	0.139	0.45	0.167
	50	1.6E-01	0.59	0.46	1.014	1	0.8	0.794	0.403	0.4084	0.3626	0.320	0.902	2 0.364
	100	3.3E-01	0.66	0.46	2.027	2.5	5 1.5	1.587	0.528	1.0705	1.0562	0.838	1.904	4 0.988

Physical Parameters

g	γ	γ	3	for Shields Eqn
ft/s2	lb/ft3	lb	/ft3	βs
	32.2	62.4	165.36	0.047

Notes:

Grain size for which incipient motion was calculated

 ϕ = internal friction angle of material

 θ = side slope angle (radians). Assumed 2:1 slope q = arctan(1/2)

Equations from Simons and Senturk, 1992.

Shulits and Hill (S and H)

 $Tc = 0.0215*Ds^0.25 \text{ if } 0.0003 < Ds < 0.0009,$

 $Tc = 0.315*Ds^0.633 \text{ if } 0.0009 < Ds < 0.0018,$

 $Tc = 16.8*Ds^1.262 \text{ if } 0.0018 < Ds < 0.022,$

Tc = 6.18*Ds if Ds > 0.022

Where Ds = characteristic grain size

2. Lane, Critical Tractive Force

Shear stress read from Figure 7.7 in Simons and Senturk, 1992.

3. Sheilds Equation

Tc=γs'Ds*βs

Equations calculate critical shear stress for bed. Critical shear stress on banks estimated as follows:

Tc sides = Tcbottom*K

where K = COS(θ)*(1-(TAN(θ))^2/(TAN(ϕ))^2)

MK01|O:\20121001.103\FINBOD_APK.DOC

Table K-4 Rock Deflector Spill Over

Mat'l	Head		Velocity						Schokl	itsch	Jage	r	Avg
Size	Drop ¹	Velocity ²	Head	H^3		q^4	H ⁵	hd ⁶	ds ⁷	S ⁸	ds ⁹	S^8	S
	ft	ft/s	ft	ft	cfs/ft	cms/m	m	m	m	ft	m	ft	ft
Α	2.00	6.0	0.6	2.6	5.7	0.53	0.8	1.07	0.65	-1.36	0.78	-0.95	-1.15
В	2.00	6.0	0.6	2.6	5.7	0.53	0.8	1.07	0.60	-1.54	0.71	-1.18	-1.36
С	2.00	6.0	0.6	2.6	5.7	0.53	0.8	1.07	0.55	-1.68	0.66	-1.35	-1.51

Flow	Parameter	S	
Q	В	g	
cfs	ft		
50	0.0	87	32.2

Material Properties			
Mat'l	D100	D90	D90
Size	inch	ft	mm
Α	9	0.53	159
В	12	0.70	210
С	15	0.88	264

Notes

- 1. Approximate head drop through sheet pile constriction.
- 2. Velocity based on approximate maximum velocity in design reach for 0.5-, 0.75-, 1-, 1.5-, and 2-yr storms. It is assumed that larger storms will drown out the deflectors
- 3. Total Head difference = head drop + velocity head
- 4. q = flow/unit width
- 5. H in meters
- 6. hd = downstream water depth
- 7. ds =scoured water surface depth downstream = 4.75*H $^{\circ}0.2$ *q $^{\circ}0.5$ /D90 $^{\circ}0.32$
- 8. S = scour depth = hd ds
- 9. ds =scoured water surface depth downstream == $6*H15^0.25*G15^0.5*(I15/K6)^0.3333$
- 10. Equations listed in Simons and Senturk, 1992

APPENDIX L

SHEET PILE DESIGN CALCULATIONS

SCENARIO I

SHEET PILE DESIGN SHEETING LINE ALONG CENTERLINE OF RIVER (3-FT CUT)

SHEET 1 of 23 W.O. NO. CLIENT/SUBJECT TASK NO. -TASK DESCRIPTION DEPT 1274 DATE 3/1/02 APPROVED BY PREPARED BY DEPT 1382 DATE 3/8/02 MATH CHECK BY DEPT. DATE METHOD REV. BY SCENARIO DESIGN ALONG SHEETING LINE 976 t Water EL. 968 (ORIG. RIVER BOT. ELEN. TO BE EXCAV. Nove = 3 576 F1. 961 ± Nave = 9 506 EL. 956± Q = 35.5° EL. 949± Granda Goils Nave = 356pg Note: $\phi = S(N)$ from Kishika sqn

Q = 120N + 15°

SHEET Of __

CLIENT/SUBJECT	wan and Eliz	DESIGNERS/CONSULTANTS	W.O. NO		
TASK DESCRIPTION		TASK NO			
PREPARED BY	DEPT	DATE	APPROVED BY		
MATH CHECK BY			AFFRO	VED BY	
METHOD REV. BY	DEPT ATO	RAPATE	DEPTD	ATE PROSTATIO	
	1	SURE DIAGRAM	Y PRES	SURE DIAG	RAM
D= 4'+5'+7'+	D* 8'	FREE			
$D = 16' + D^*$	0	8			
	*	Pi			
110000	3'	PZ		RJ.	
LEP=	0 +				a torre
	*/	68.2 psg			
	5	984.8 ps	2 *		
"a" \ /				·	
5.61	7'	1 /	(3) <		
A ELEV	स्टर्शक इस				
	*	33'	76.0 pg		
/ E			4		
W 10-05-003/A-5/85	-	P ₄		Pwz	
		174			

CLIENT/SUBJECT			W.O. N	0	
TASK DESCRIPTION			TASK	NO	
PREPARED BY	DEPT	DEPT DATE		APPROVED BY	
MATH CHECK BY	DEPT	DATE			
METHOD REV. BY	DEPT	DATE	DEPT	DATE	
$P_{\omega} = 1$	1 × 62.4 2	ref = 68	6.4 psl	'	
Pu, =	$P_{\omega_1} = 68$	56.4 ps			
	<u> </u>				
KACK KP 1	/A., EZ !	/<		- 4a 2A	
DACK DA	Mades.	1 Sec 1	1186 51	est Pila	
1) Stra	tum (1)	Grom	Dan	ian Monul	
				7	
	Ka:	$\phi = 22$	2,5	·	
)		
	F	$d\phi = 0$			
		$5/\phi =$	5 (HS	sumed	
	717				
	KA=	.42			
					
	Kp:	$\phi = 2$	2.5		
		_ / .			
	+	$3/\phi = 0$	$\rightarrow h$	$P_{u} = 3.6$	
		/	\cdot 0	- 426	
	76	$\phi = .5 -$	~> K	7,000	
	γ/	1 _ 7/	(435) =	3.01	
		P 3.6	(30,5) -	5.01	
	1.7		7		
	1K.	= 3.01			
			1		
· · · · · · · · · · · · · · · · · · ·					

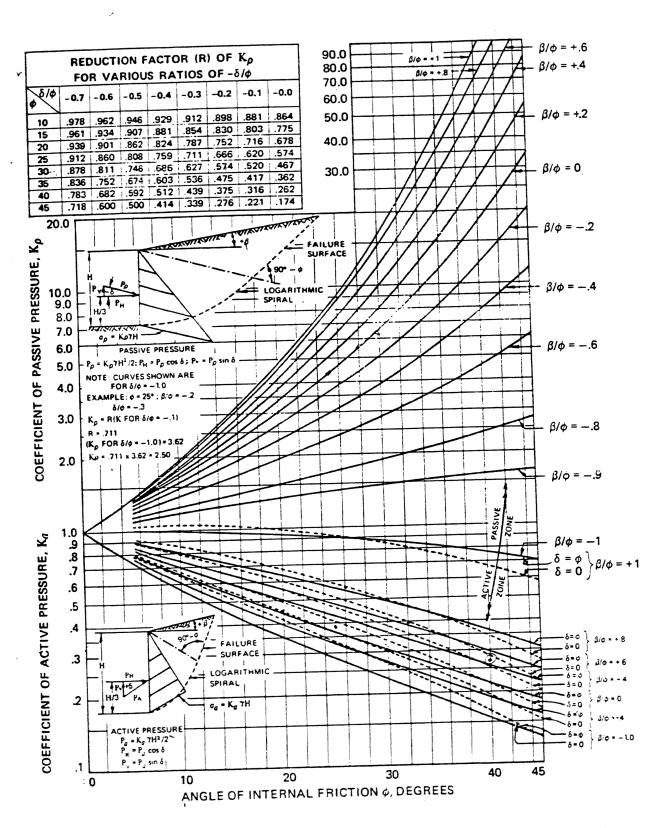


Fig. 5(a) - Active and passive coefficients with wall friction (sloping backfill) (after Caquot and Kerisel²¹)

CLIENT/SUBJECT			W.O. N	0
TASK DESCRIPTION			TASK	NO
PREPARED BY	DEPT	DATE	Al	PPROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	DATE
	22			
z.\ 70	ratum (2)			
	1/			
	KA: 9	D = 28.	5	
		= 0°		
	74	- 0		, >
	17	$\zeta_A = .34$		
)		
	1/		_	
	Kp: 0	=28.9	5	
	<i>B/4</i>	3=0°	0/0 =	,5
<u> </u>	\\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<i>5.</i> 7	0- n	ر ر
	IV	= 5.7 (765 =	4.36
).).		
٠, ,				
3) Th	stem 3			
/			٥ــــ	
	KA: ¢	s = 35.	9	
		3/1 - 6	0 5/	b = .5
		70 - 0		p = . >
	IV	A = .20		
		A		
	Ko: 0	p = 35,5	8	
	F/.	$\phi = 0$ °	8/0 =	.5
	1/		΄,	
	KPu=	(1.5	火=.	666
		/	((())	
RFW 10-05-003/A-5/85		$L_{p} = 11.5$	(.666)=	1.06

CLIENT/SUBJECT			W.O. N	10	-
TASK DESCRIPTION			TASK	NO	_
PREPARED BY	DEPT	DATE	A	PPROVED BY	7
MATH CHECK BY	DEPT	DATE			
METHOD REV. BY	DEPT	DATE	DATE DEPT DATE		_
4.) 56.	atum	$ \phi = 41 $ $ \phi = 0^{\circ} $ $ [K_{A} = 4] $	22 (0°	5	
	K	$p_{u} = 18.0$ $p_{u} = 18.0$	R	=.592	
Ďsat	tts { } = 5 (see t il stro	N) typerdy	93 108 120	(PB)	la :

SHEET 6 of ___

pg Z to wt of 8 of free water	CLIENT/SUBJECT	W.O. NO				
MATH CHECK BY DEPT DATE METHOD REV. BY DEPT DATE DATE DEPT DATE DATE DEPT DATE DATE DEPT DATE	TASK DESCRIPTION			TASK	NO	
METHOD REV. BY DEPT DATE DEPT DATE The property of the pr	PREPARED BY	DEPT	DATE	AF	PPROVED BY	
Then $P = g K_A = \int 6' \times 62.4 pg (.42) = 210 pg$ See See Do and die To who is of free water From P = P + (93-62.4)(3')(.42) = 249 ps Calculate: P = P (D) - A (H+D) -> App B John Borne LEP Active LEP Calculate calculate on all state on all stat	MATH CHECK BY	DEPT	DATE			4
Juncharge boad due 12 to we of 8 of free water Ligare P=P+(93-62.4)(3)(.42) = 249 ps6 Colorate: P3 = P(D) - A(H+D) > App B p3 3-3 p3 2 Passive LEP Active LEP Color Good Colorate on all strate on all strate within Texture within Juntance	METHOD REV. BY	DEPT	DATE	DEPT	DATE	
harania and a second a second and a second a	Jen See pg 2	P = 9 K	a = [8'x purchage 5 wt of 13-62.4) pcb strata restance	Calc Constant	(42) = 210 e water) = 249p Ap Ap Ap Destares	86 B3
and the contract of the contra				.//		

SHEET \underline{Z} of $\underline{\hspace{1cm}}$

TASK DESCRIPTION			TASK	NO
PREPARED BY	DEPT	DATE	AI	PPROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	DATE
H D/-		0 0 00		
Then I (L) so cal	laulated	: معن	
		PAS	SSIVE	4
		DIA.	SP GRAM	
7	7			
	3'''			
\mathcal{C}		Fiz /	4'	
		1 8	+ *	
		Tr.		
		/	5	
	TPU /		V	
	/ Pi	3	· · · · · ·	
3	/			
			7	
P26 /	PPS			
			1 7	
	(4)		D*	
			4	U
0= = 19	3-62.4)(-pg	1)/3 01)	= 368	4 sel
TRIL	pel	1)(2.01)	500.	1 60
0 [7 \	c $\sqrt{3}$ c		
P2=1	(93-62.4)	(4') (4.36) = 533	3.7 ps
		J T		, ,
Pol	122 7 L	(100 17 11	1/11/11/11/20	1-1000
1 13 =	フンコ・ハ 丁 (100-62.7	1/2/19.3	(a) = 1527.7
	. <u> </u>			***************************************
	. , l l l l l l l	1')+ (108-1 pce		- \

	9		
SHEET		of	

CLIENT/SUBJECT	MANAGERS	DESIGNERS ACCURSULTANTS	W.O. N	10	
TASK DESCRIPTION			TASK	NO	(
PREPARED BY	DEPT	DATE	A	PPROVED BY	
MATH CHECK BY	DEPT	DATE			
METHOD REV. BY	DEPT	DATE	DEPT	DATE	
	7				
1 1	3				
	' ACTIVE	FREEL	NATER		
	LEP				
V.	DIAGRAM	PA,		-	
1					
7'					
		Rz	PAZ		
6		a \	\		
<u> </u>		las	PA4		
					(
			B7	JA6	
1 4					
			\	\	
<u> </u>				TAR	
	,				
PA. = 0	7 KA = 1	8'x 62.4 7	of (.42)	= 210 psf	
	47				
A2 =	210+ (93-62.4)	7' (.4Z)	= 300 psk)
		P70	VOITZU	1 = 747 6	0
(A ₃ = 1	9×62,4 +	(43-62.4	Y 1) 1.3 ,)= 242.6	P30
	-1/-1	(100 (-1)	V-1V-716	1 - 270 l n	1
1 A4 =	242.6+	(108-62.4)	人5人5个)= 320.1 p	20
					1
TAS = (- 2x 6/.4+ (73-62.4]/)+(100-6	7.4)(5)(26)	1
				= 744.9	hoch

	- (0		
SHEET			of	

OLIENT/OLIB IEOT	MANAGERS	DESIGNERS/CONSULTANTS		1EET of	-
CLIENT/SUBJECT)	-
TASK DESCRIPTION			TASK I	NO	- 7
	DEPT		AP	PROVED BY	
MATH CHECK BY	DEPT				-
METHOD REV. BY	DEPT	DATE	DEPT	DATE	_
0 -	744 5 +	(172-17)	WniYn		
746	244.8+	(120-62)	7人/ 火~	9	
			= 30	49.6 psf	
\sim					
/An = /	- 8x62.4+ - + (12	(93-62.4)	(10)	8-62.4)(5	
	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			_ 50~9	
	7 (12	-0 - 62.4)	(1)(.22)	= 275.0	PS
				<u> </u>	
TAS =	795.8-	L (127.5-	-62,4)(D	* (.22)	:
					_ 344
5			= 295.	8+14.3	D
	$\supset \backslash F \backslash$	Λ / μ_{λ}	- 1		
Q /2 = 1	P(D) -	$P(\Pi T)$	<i>- - - - - - - - - -</i>		•
7					J
G00 M0 Z =	= Pp, -	Pas =	4025.8	+ 693.3	D
7278	1 '7	\	ے کا		
			- [295.	6+14.31	
	See pa	1 Soe Jugo			
	76	14 2000	~		
	: 1 43	= 773	0+67	7 D* 1	
	*				
(I doubate	•				
			^ / `		
D =	- 1/ H	+D)-	HID)) ~>> %	an Z
xx 14				1 H	
118				P	R-2
RFW 10-05-003/A-5/85				A., A.	J

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPROVED BY	
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTDATE	
METHOD REV. BY PH D D Deformed to the placed on the plac	- DEPT Cala Fral Pral 62.4 + 6 3×62.4 + ×62.4 +		20 follows with where Pa values: (1) = 1502.6 psf (7) (3.01) = 2147.3 (7) (4.36) = 31(0.4 psf (5) (4.36) = 4104.5 psf (7) + (108-62.4)(5)(7. 1.1 psf (7) + (108-62.4)(5) (7) + (108-62.4)(5) (7) + (108-62.4)(5) (7) + (108-62.4)(5) (7) + (108-62.4)(5)	26,
PR= 1	4320 -	t (127.5-	-62.4 (D*)(10.63)	
		a kana ng angganani ao animana	+320 + 693.3D*	<u> </u>

SHEET Of ___

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPRO	VED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTD	ATE
A (D) is a reference to are replaced KA values: PA = (9) PA2 = (9) PA3 = (9)	20 colorados Figor Gy PA 3-62.4) 93-62.4) 11.6+ (10	as follo	300 with a e PP solc. w 41, 67 (34) = (-62.4(5)	19.1 psf [(26)
		0-62.4)(7	()(26) =	
		(127.5-62	.4)(D*)((65.8 ps/ (622). + 14.3 D*
52e 14 Z RFW 10-05-001 A 585	= P(H-		(D) = f	

SHEET <u>3</u> of ___

CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE
METHOD REV. BY A = [DEPT		(8-Kno) X = 0 (8-Kno) X = 0 (8-Kno) X = 0 (8-Kno) X = 0 (9-Kno) X = 0 (14-24 (04) (04) (14-4)
			(1) of above ago
			so voled

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPROVED BY	
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTDATE	
\ \ hen \ \ \ \ T \ =	<i>=</i> 0 .			
1/14647		1/2/4/1	(6'LE' + 5')	
1 (686,4)		(686.4)(7797//	
+ (686.4)(D*) +	3 /210	ps(+ 249 ps()	
P56 /		<u> </u>	2	
				×7.
1 /249	osk VZ	.14')- =	L/7730+679D	17
2	1-0,00	1 / 2	2 — — — —	ر ا
				_
			See P	3.5
1/2//	7020 6	(D9D*).	+ (14154.2+679]	*
+ + (+)(11307	6/11	1 (19131.276/13	
		=	= 0	
Lee pg 2	(
		2		
	Y	1		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	as 1	101/6	1 4 1006	
3775.2 + 10	)78214	7 688	12 + 650.3	
+ 390.9 -	2062	7 79		
+ 10942.1=	2+ (	679ZD	<b>5</b> 0	
Egnus 51	D*, 2	: + / );	elimenate one	
pariable no	turn th	tat (see	eliminata one	



	مر ا		
SHEET	13	of	

and the second s	DESIGNERS/CONSULTANTS	W.O. NO.	
		TASK N	0
DEPT	DATE	APP	PROVED BY
DEPT	DATE	DEPT	_DATE
+ D*		<b> /</b>	
1			
686.4	D* - 38	65 (D*+	·12.86)
)* ( D	+ 12.86)	+ (0942	2. <del>[ E</del>
+ 679	72D*	= 0	
D*2_	? 7544.6I	)*+ 109	42.12
1			
6792	$D^*-3$	3466.1	
	5		
e lan	7:		
D*+	10942.1)	= 33866 +	.9+7544.6D 339.5D*2
	\$		
228	66.9+ 75	44.6D*-	+ 339.5D*2
320			
	DEPT	DEPT DATE DATE DEPT DATE DATE DATE DATE DATE DATE DATE DAT	DEPT DATE APP DEPT DATE DEPT DATE DEPT DATE DEPT DATE  DEPT  L D* = 3,14 + y  V = D* + 12,86  Cove eqn + simplify:  686.40* - 3865 (D* +  079.20* = 0  079.20* - 33866.99  e for Z:



CEIENT/SOBJECT					_
TASK DESCRIPTION			TASK	NO	_
PREPARED BY	DEPT		AI	PPROVED BY	
MATH CHECK BY	DEPT	DATE			$\dashv$
METHOD REV. BY	DEPT	DATE	DEPT	DATE	_
This is one eq.  SM BOTTOM =  OF SHEET		uphyour	~ ; ~ce	2 2 ml p	0
3775.2(D*+1 + 686.4 D*(	6十出	+ 109 + 688.5	182.4 (I 5 (D*+)	)*+ 16 16+ 37	
+ 390.9 (D	*+ 17 Y	.86 + <u>2</u> 3	_(3,14))	)	
- 3865 (D*	+ 12,86	$\sqrt{\frac{D^{*}+12}{3}}$	.86)		
- 339.5 D	)*(D*	+12.86)	D*+12	(28.	
+ 10942.1	Z (Z	=)+ 6"	79ZD*	$\left(\frac{2}{3}\right) =$	0
	Sing	Lifyin	0		
RFW 10-05-003/A-5/85					



CLIENT/SUBJECT	W.O. NO			
TASK DESCRIPTION			TASK NO	).
PREPARED BY	DEPT	_DATE	APPF	ROVED BY
MATH CHECK BY	DEPT	_DATE		
METHOD REV. BY	DEPT	_ DATE	DEPT	DATE
\ <u>\</u>				/ 4
3775.2D"+ 60	0403.2-4	13842.4	+ 1098	Z,4DT
		-2		
3775.2D*+60 +87859.2+3	343.ZD	T + 646	5D'-	+ 11016
+ 1032.8 + 390	19D*1	- 5007+	818.7	
7.092.0	<b>7</b>	, ,		
- (3865 D*+	49203.9	)/D*+12	.86	
<u> </u>		( 3	]	
(				
$-(337.5D*^2$	+ 43661	) (D+ 12	2.86)	
+ 3647.42	2 + 7	26.370*	72=	0
7 75 77 7				
	ζ			
	/_			
179998.8+	16427 T	× 1 247	7 1	,2-
1 177,190.0+	(5051)	+ 575		
178/575	K , 11971	29\/ b*.	+12.56	\
- (3865 D	+ 7 ' / 2		2	<i>)</i>
1-70-	2 , , _ ,	<u>.</u>		
-(337.5)*	+ 4366	D)/ U +	12,706	. )
		/ \	3	1
1 2/1/17/1/-	2 4 77	12D*	72 _	$\cap$
+ 3647.47		. کلا ر ه ک	L	



SK DESCRI	PTION			TASK	NO
EPARED BY	,	DEPT	DATE	A	PPROVED BY
TH CHECK	BY	DEPT	DATE		
THOD REV.	BY	DEPT	DATE	DEPT	DATE
		\	- / \	0	
nno	(A) + (E	) are -	$r(z, D^*)$	only +	- con be
A. 0	Comulta	reously	6	0	
		$\sqrt{Q}$	_ *		
-1,	rial #1	: Aso	(Z, D*)	= 2.0	
		·			
		2= //	5.09'	$\rho$	· (A)
		Z - 9	.0(	from C	6.0
	1112		) = -52 + 50 assu	4271	(+0)
	LM -	Zanco	) = - > 2	- 037.6	(70)
		9	et 50	ice no	ative 3
			asse	الله لاحب	in too do
_	Ti-D#.	2: A.	une D	* = 1.0	5
	1,000		4	1.	
		<b>4</b>			) A
		2=	3.59	from E	A)
				1 1 1 1	
	LH	S Egn (B	) = -2	3124,1	(+0)
		U	d	gice -	egative,
			000	unal D	* is too d
	, n	<u>.                                    </u>			
	(real a	*3: H.	sune D	' = 0'	
		4	•		
		_ &			6
		そ=	3.10 R	rom Eq	n (b)
	,			-4	
		HS Eq.	$\wedge (B) = .$	+1986.3	> 20
		V		D	£_0
				٠٠ ٢	
					7
					<b>y</b>



SHEET 19 of ___

CLIENT/SUBJECT	MANAGERS	DESIGNERS ACONSULTANTS	W.O. NO	·	
TASK DESCRIPTION			TASK N	10	
PREPARED BY	DEPT	DATE	API	PROVED BY	7
MATH CHECK BY	DEPT	DATE			
METHOD REV. BY	DEPT	DATE	DEPT	DATE	_
— *		. 0	. / 0-	0 0	
·* ; [ ] =	O analy	ses Show	· that	gleeter	7
dinen	to top	of stratum	· (4) will	Saturfy	
Hotes	of the p	Dollam .		70	
/.e.	7)	= 4 + 5	( + 7 +	T3#	
	CALC				
		= 16			
				•	
		= (1,7)	(6')=	19.2	
	DESIGN -	7	•	Su	00
		FS En			9'
		Tomboren	orat rue	tem	
		, , , , , , , , , , , , , , , , , , , ,			
	1= 19	+ 3'+	8 =	30	
					***
	· min	read -			
	largt	a of sheets			
			,		
Determine	levation of	1 zero Sh	ear;	Assena	
Hat the	ocerso us	then str	etum 3	e dut	avec.
Determine of that this of "a" Celow	- too of	stratum.	see pa	2);	
Celous	$\infty$ $0$				
, / _ ,		1011/0	$\lambda$	a / _ \	
( 686 ,	4)(11')+	646,4 (7	)+6	86.4 (a)	
+ 3 / 210+	249 1	(>49 /2	14'\-		
+ 3 (210+					
- L (4'-7 2 (4'-7) FW 10-05-003/A-5/85	3.14) (93-62	2.4)(3/0142	)(86')   -	see_	-44
Z \ /	/L pob	/ //	1 / 2	ref	TO
FW 10-05-003/A-5/85		U68.204	6		

			O.		Anna Carlotte Contraction of the Carlotte Contraction of t
CLIENT/SUBJECT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	W.O. NO	).	
TASK DESCRIPTION			TASK I	NO	
PREPARED BY	DEPT	DATE	AP	PROVED BY	
MATH CHECK BY	DEPT	DATE		984.9	5
METHOD REV. BY	DEPT	DATE	DEPT	DATE	
- (5')\{\\ \frac{69}{69}\}	3.2 pg + (1	08-62-47 Z	(4.3634)	(5)+	68.2
-(a) { =	784.8+[	120-62.4 Z	1 7.642	6)(a)+	984.8
		<i>p</i> -		3376.0	
	<b>V</b>	zinja	je j		
3775.2 +	6111.6	+ 666.	1a +	688.5	
+ 390.9-	_ 29.3	- 263	2.4		
- 984.8a	- 213:	Ta2=	<b>;</b> 0		
$-213.1a^{2}$	-298.40	a + 83	170.50	<b>)</b>	
213.	1a2 + 298	4a-8	370,5= C		
713.	n with	a = b = -	+213.1	C=-	<b>-4</b> 370.5
$X_{12} - b \pm x$	15-4ac =	-298.4±	(298.4)	4/213.1	4370.5

			•	0	
CLIENT/SUBJECT			W.O. N	0	-Consta
TASK DESCRIPTION			TASK	NO	_ (
PREPARED BY	DEPT	DATE	A	PPROVED BY	
MATH CHECK BY	DEPT	DATE	·		
METHOD REV. BY	DEPT	DATE	DEPT	DATE	
1	= X ( 7000-	tue =	561'Z	57' GR	
	Pro				<u>ک</u>
		1e. 5	les, of	to the	<u> </u>
		<i>7</i> 44	/ 500 ·	pg 2)	<u>ب</u>
H 6	M	λ/		/ 0 /	
1600	-   <u>  e</u> leur =	= 1 lma	4		
	of zero				
	······································				
	<b>5</b> 1				
1.e. Mnox	= 3775.	2 (5.61	+9+11	3	
+ 6177.6/5.	61+ 9/2).	+ 686.4	(5.61)	(5.61/2)	
+ 688.5/5.6	51+9+3/2	) + 390	0.9/5.61	+5+.86+	2 ( <b>5.</b> (4)
-29.3 (5.61'-			<u> </u>		
- \frac{1}{2} (5') \qqq4.9	1 /				1
	(5.61) (3:				
		= 11	0,849	4 Rt-R	6

т	WESTERN
ION	

SHE	ET2	کے	
SHE	ET	of	

CLIENTSUBJECT TASK DOS CREAD  TASK NO.  TASK NO.  TASK NO.  TASK NO.  PREPARED BY  MATH CHECK BY  DEPT DATE  METHOD REV. BY  DEPT DATE  DEPT DATE  DEPT DATE  SREAD  (10849.4 Relly (12 m/pt)  (5 (50,000 psi)   AZ-26 read!  (Spect = 48.4 in/ft)  Contains  Co				SF	IEEI of
PREPARED BY DEPT DATE APPROVED BY  MATH CHECK BY DEPT DATE  METHOD REV. BY DEPT DATE  SREAD > (10849.4 Rell 12 m/g)  .65 (50,000 psi)  SREAD > 40.93 in/g  (5pcs = 48.4 in/ge)  Uning a 10% permissible orders factor (ie. 1.10 in denominator of above light) for temporary construction:  SREAD > (110,849.4 ftel /12 in/ge)  1.10 (.65) (50,000 psi)  = 37.74 in/ge	CLIENT/SUBJECT			W.O. NO	•
MATH CHECK BY DEPT DATE  METHOD REV. BY DEPT DATE  SREAD > (10849.4 Rell) (12 m/ft)  .65 (50,000 psi)  SREAD > 40.93 in/ft  AZ-26 read!  (Sper = 48.4 in/fe)  Using a 10% permissible orderstress  Factor (1e. 1.10 in denomination of above light) for temporary construction:  SREAD > (110,849.4 ftel / 12 m/ft)  1.10 (.65) (50,000 psi)  = 37.21 in/ft	TASK DESCRIPTION			TASK N	10
METHOD REV. BY  DEPT DATE  DAT	PREPARED BY	DEPT	DATE	AP	PROVED BY
Spead = (110849.4 feelb (12 m/ft)  .65 (50,000 psi)  Spead = 40.93 in/ft  AZ-26 read!  (5per = 48.4 in/fet)  Using a 10% permissible overstress  factor (12.1.10 in denominator of above  lyn) for temporary construction:  Spead = (110,849.4 ftel (12 in/ft)  1.10 (.65) (50,000 psi)  = 37.21 in /ft	MATH CHECK BY	DEPT	DATE		
.65 (50,000 psi)  Span = 40.93 in/fe  AZ-26 read!  (Spen = 48.4 in/fe)  Using a 10% openimile overstees  Poston (1e. 1.10 in denominator of above  Lyn) for temporary construction:  Span = (110,849.4 ftel (12 in/fe)  1.10 (.65) (50,000 psi)  = 37.21 in /fet	METHOD REV. BY	DEPT	DATE	DEPT	DATE
	Urina Ractor 1	EQD > (1)  ATO  ATO  TEMPO  TE	0849.4 -65 40.93 -26) Sper = 10,849 1.10 = 31	80,000 13/80 200,000 13/80 148.4 in 148.4 in 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,00	of above (12 in/pe) 0,000 psi
	RFW 10-05-003/A-5/85	( )	rca C	, ,	10

WESTEN.

SHEET 23 of ___

CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE
$\Omega I$	1-0-	-0-5	4-6-
floo	Juelo.	must 6	e nomfactured
			(Grude 50)
Tie 5	O lesi y	reld str	ength steel,
4,	400	PA	000
of nu	ed trave	- 600	rolled
: 0.0	al- kn	- alcana	te water
of the second	700	0	0 0
inflow	- contro	K, Vu	rebook long in
Gould	- be 3	<b>5</b>	
			Ph.D., P.E.
			, ) tale,
			Ph.D. P.E.
			12 h. D. 11.
	ta di nada da	(	1.107 —
			21110

# APPENDIX A

CLIENT/SUBJECT September 1	_ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	λ.	SHEET of
CLIENT/SUBJECT	MANAGERS DESIGNERS/CONSCI	W.0	O. NO
			ASK NO
PREPARED BY WOL	DEPT DATI	E1/23/02	APPROVED BY
MATH CHECK BY	DEPT DATI	E	
METHOD REV. BY	DEPT DAT	E DEPT	DATE
(1)	elation of	8 6	$\mathcal{N}$
	= +		
20		•0	
A.) Coarse	proceed go	cla	
	ee pg Z Ta	-00°	
79	= 12		
- 8	non this T	able_	6
•			
	$\delta_{\tau}$		
	07		
	100	1028/	94 pcf
4	(77+	12=	'' ' '
	/1.5 =	, ,20) / -	= 111 pcf
10	(102.)	× (2)/2.	711 20
30	(120+	130 /2	= 125 pcf
	1 1 1 7, 1		
570	(130 +	140)/2 =	135 pcf
	see plot o	1 this	ala
		0	
8	n pg 3		
	VV		



A OLC DECODIDATION					TACK	NO		
ASK DESCRIPTION				Г		NO		
PREPARED BY					AP	PROVED	3Y	
MATH CHECK BY	DEI	PT	DATE					
METHOD REV. BY	DEI	PT	DATE		DEPT	DATE		
Table 3-3. Empirical valu			lar soils based on t					
with corrections for depth	and for fine saturated	i sands			T			
Description	Very loose	Loose	Medium	Dense	Very dense	1		
Relative density D,*	0 0.15	5 0.3	35 0.65	5	0.85	1.00		
Standard penetra-	- 4	10	) 30		50			
Approx. angle		Î	, 35			•		
of internal friction φ°† 2	5°-30° 27-3	2° 30–	35° 35–4	0° 3	8–43°.			
Approx. range	85 AVE	102.5 AVE	_		1			
of moist unit			100 110	130 AVE	140			
weight, $(\gamma)$ pcf $(kN/m^3)$	(11-16)	90-115	(17-20)	140–140 (17–22)	(130-1) (20-2)		-	
* USBR [Gibbs and I † After Meyerhof (195 5 percent fines. Use large 2 th should be noted Material must be quite de soils are common.	56). $\phi = 25 + 25D$ , with reverse values for granular that excavated mater	material with 5 rial or material	percent or less fir dumped from a	e sand and si truck will we	lt. igh 70 to 90 i		NHO	tro
							***************************************	
				· .			•	
O $O$		)	4	0	11		<b>.</b>	
Rol:	Bowl		27l o	2.	. "[-	-d.	•	
Ref:	Bowl	) .	27d-0	2.	. "F			
Ref:	Bowl A-nal	) ao	27d o	d.		.J.	•	
Ref:	Bowl A-nol	) as,	272 o	d.	• ;	T	•	
Ref:	Bowl A-nol	) upus	2nd o	d.		-J.	•	
Ref:	Bowl Anol	) oo,	272-0 + D	2.			•	
Ref:	Foul A-nal	) ypis	272 o	2.			•	
Ref:	Rowl A-nol	) upis	272-0 4 D	L.	• • •		•	
Ref:	Howk A-nol	) upus	272 o	2.			•	
Ref:	Howl A-nol	) upis	272-0 4 D	2.				
Ref.	Foul A-nal	) upus	272 o	2.			•	



 $\frac{4}{3}$ 

ASK DESCRIPTION		DATE		NO	$\exists$
PREPARED BY			—  A	TENOVED BI	
METHOD REV. BY		DATE	DEPT	DATE	
WEIROD REV. BT	, Peri				
	Pa		(V)		
	12/2		3		
K	<u>@</u>		116		
	`~ Z		en e		
<b>b</b>	1 2				Ç
	7.2	7.	i b		
		2 ž	SKAIN		
		. 2			
		8 7	0		_ 9
		. , ,	DARS.		
			Ĭ		
	9			$\infty$	ſ
	N N			र्	
				00	
		•		10	
				79	
	<b>\</b>				
				0-	
		<u> </u>		<b>\</b>	- (
				2	
					• • • • • • • • • • • • • • • • • • • •
				N. A. A. A.	
75/	08/ 02/	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	W)	79 8	<b>థ</b>

# APPENDIX B (REF: USS STEEL SHEET PILING DESIGN MANUAL)

# GENERAL CONSIDERATIONS

The design of sheet pile retaining walls requires several successive operations: (a) evaluation of the forces and lateral pressures that act on the wall, (b) determination of the required depth of piling penetration, (c) computation of the maximum bending moments in the piling, (d) computation of the stresses in the wall and selection of the appropriate piling section and (e) the design of the waling and anchorage system. Before these operations can be initiated, however, certain preliminary information must be obtained. In particular, the controlling dimensions must be set. These include the elevation of the top of the wall, the elevation of the ground surface in front of the wall (commonly called the dredge line), the maximum water level, the mean tide level or normal pool elevation and the low water level. A topographical survey of the area is also helpful.

Earth pressure theories have developed to the point where it is possible to obtain reliable estimates of the forces on sheet pile walls exerted by homogeneous layers of soil with known physical constants. The uncertainties involved in the design of sheet pile structures no longer result from an inadequate knowledge of the fundamentals involved. They are caused by the fact that the structure of natural soil deposits is usually quite complex, whereas the theories of bulkhead design inevitably presuppose homogeneous materials. Because of these conditions, it is essential that a subsurface investigation be performed with exploratory borings and laboratory tests of representative samples. On this basis, a soil profile can be drawn and the engineering properties of the different soil strata can be accurately determined. These properties should reflect the field conditions under which the wall is expected to operate. Only after these preliminary steps are taken should the final design be undertaken.

There are two basic types of steel sheet pile walls: cantilevered walls and anchored walls. The design of each type for various subsurface conditions will be discussed in the following sections.

**3** 

CANTILEVER WALLS In the case of a cantilevered wall, sheet piling is driven to a sufficient depth into the ground to become fixed as a vertical cantilever in resisting the lateral active earth pressure. This type of wall is suitable for moderate height. Walls designed as cantilevers usually undergo large lateral deflections and are readily affected by scour and erosion in front of the wall. Since the lateral support for a cantilevered wall comes from passive pressure exerted on the embedded portion, penetration depths can be quite high, resulting is excessive stresses and severe yield. Therefore, cantilevered walls using steel sheet piling are restricted to a maximum height of approximately 15 feet.

Earth pressure against a cantilevered wall is illustrated in Figure 14. When the lateral active pressure (P) is applied to the top of the wall, the piling rotates about the pivot point, b, mobilizing passive pressure above and below the pivot point. The term  $(p_{\rho}-p_{a})$  is the net passive pressure,  $p_{\rho}$ , minus the active pressure,  $p_{a}$ . (Since both are exerting pressure upon the wall.)

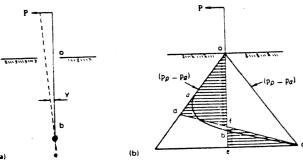



Fig. 14 — Earth pressure on cantilever sheet piling (after Teng1)

At point b the piling does not move and would be subjected to equal and opposite at-rest earth pressures with a net pressure equal to zero. The resulting earth pressure is represented by the diagram oabc. For the purpose of design, the curve abc is replaced by a straight line dc. The point d is located so as to make the sheet piling in a state of static equilibrium. Although the assumed pressure distribution is in error, it is sufficient for design purposes.

The distrubution of earth pressure is different for sheet piling in granular soils and sheet piling in cohesive soils. Also, the pressure distribution in clays in likely to change with time. Therefore, the design procedures for steel sheet piling in both types of soils are

discussed separetely.

Cantilever Sheet Piling in Granular Soils — A cantilevered sheet pile wall may be designed in accordance with the principles and assumptions just discussed or by an approximate method based on further simplifying assumptions shown in Figure 15.

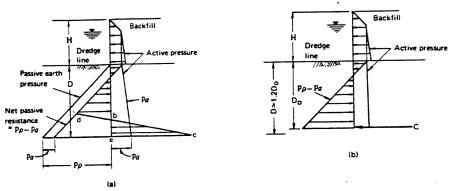
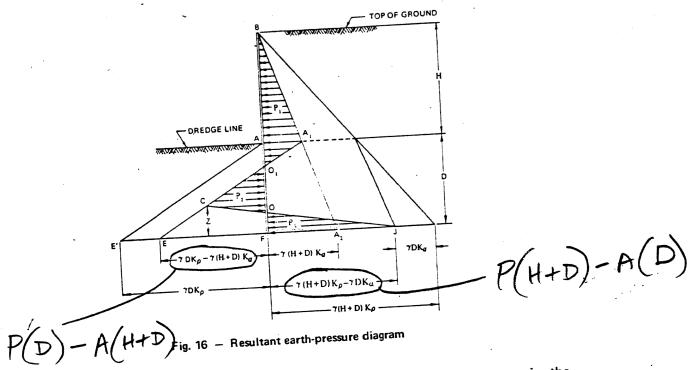



Fig. 15 — Design of cantilever sheet piling in granular soils: (a) conventional method; (b) simplified method. (after Teng¹)

For cases of two or more layers of soil, the earth pressure distributions would be somewhat different due to the different soil properties; however, the design concept is exactly the same. Lateral pressures should be calculated using the curved failure surface (log spiral) method as shown in Figure 5 (a).


Conventional Method — The conventional design procedure for granular soils is as follows:

 Assume a trial depth of penetration, D. This may be estimated from the following approximate correlation.

Standard Penetration Resistance, N Blows/Foot	. Relative Density of Soil, $D_d$	Depth of Penetration*
0-4	Very loose	2.0 H
5-10	Loose	1.5 H
11-30	Medium dense	1.25 H
31-50	Dense	1.0 H
+50	Very dense	0.75 H

^{*}H = height of piling above dredge line.

2. Determine the active and passive lateral pressures using appropriate coefficients of lateral earth pressure. If the Coulomb method is used, it should be used conservatively for the passive case. The resulting earth pressure diagram for a homogeneous granular soil is shown in Figure 16 where the active and passive pressures are overlain to pictorially describe the resulting soil reactions.



3. Satisfy the requirements of static equilibrium: the sum of the forces in the horizontal direction must be zero and the sum of the moments about any point must be zero. The sum of the horizontal forces may be written in terms of pressure areas:

$$\triangle(EA_1A_2) - \triangle(FBA_2) - \triangle(ECJ) = 0$$

Solve the above equation for the distance, Z. For a uniform granular soil,

$$Z = \frac{K_{\rho}D^{2} - K_{\alpha}(H+D)^{2}}{(K_{\rho} - K_{\alpha}) \ (H+2D)}$$

Take moments about the point F and check to determine if the sum of the moments is equal to zero, as it must be. Readjust the depth of penetration, D, and repeat until convergence is reached; i.e., the sum of the moments about F is zero.

- 4. Add 20 to 40 percent to the calculated depth of penetration. This will give a safety factor of approximately 1.5 to 2.0. An alternate and more desirable method is the use of a reduced value of the passive earth pressure coefficient for design. The maximum allowable earth pressure should be limited to 50 to 75 percent to the ultimate passive resistance.
- Compute the maximum bending moment, which occurs at the point of zero shear, prior to increasing the depth by 20 to 40 percent.

A rough estimate of the lateral displacement may be obtained by considering the wall to be rigidly held at an embedment of ½D and subjected to a triangular load distribution approximating the actual applied active loading. The displacement at any distance y from the top of the pile is then given by the following expression:

$$\triangle_{\hat{V}} = \frac{P_t}{60E1\hat{V}^2} \cdot (y^5 - 5\hat{V}^4 y + 4\hat{V}^5)$$

## **SCENARIO II**

# SHEET PILE DESIGN SHEETING LINE ALONG CENTERLINE OF RIVER (WORST-CASE SCENARIO [5-FT CUT])

SHEET _ of W.O. NO DEPT 1274 DATE 3/4/02 APPROVED BY METHOD REV. BY SCENARIO I LINE ALONG & RIVER ST CASE SCENARIO (5'CUT) EL. 976 ± EL. 968 (ORIG. RIVER BOT. ELEV. EL. 961± EL. 956± EL. 949+ Note:  $\phi = f(N)$ from Kishela sagn

WESTEN!

SHEET _____ of ____

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO.	
PREPARED BY	DEPT	DATE	APPR	OVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	ON DATE	DEPT_HYI	PAIE
	PRESS	RAL DEARTH URE DIAGRAM	1 PRES	SURE DIAG
	不		3 \	
$D = 2' + 5' + 7' + D^*$ $= 14' + D^*$	<u>:</u>	FR	EE TER	
+ D*	8'	$\omega$		
= 14 + 1)*				
- (1 - 1)		11 3	+	
		1111-	2	
	*			~ ~ ~
	5			
	J Company		$\prec$	
		P ₂		Pw, J
7 / / 3 / /		7	<b>A</b> - 1	
	2'	<del></del>	¥	
			^X' <	
s pels sy	7			**************************************
(563) (108-62.4) 4.363	34) 5		(2)	
(5-1.63) [(108-62.4)/4.363 = 801.1 pg			<b>'</b> `	
- 110				
- T-0 1710/511	7.7	>	recorded as	
801.1+7 (20-62.4) (7.66	-26/	A A A A A A A A A A A A A A A A A A A	K	
= 3784.8 pg/	<del>\ 1)\</del>	>	<b>y</b> (3)	I en communication de la c
- 3/04.0 pm	Application			St. parathetesis de
	,		K	e a a
				en.
" a" \	^			
a .	- 4	<b>&gt;</b>		etransfero (E.S.
	P* .	Management of e	(4)	Withward
/ =		•		MAC (CALL)
4 P3	V ,	PH		( 142
<b>79</b> Fix. 30708-008 Ar8/88	•	•		



	3		
SHEET		of	

CLIENT/SUBJECT			W.O. N	10		
TASK DESCRIPTION			TASK NO			
PREPARED BY	DEPT	DATE	A	PPROVED BY		
MATH CHECK BY						
METHOD REV. BY	DEPT	DATE	DEPT	DATE		
Pw. = 1	31×62.47	ef = 8	11.2 ps/	2		
$P\omega_z =$	Pw, = 81	1. Z ps/				
l l T		, , ,		. /		
KA+ KP	VAILES:	15ee (	P.A. B	2000		
CAY CP	'ncaco	( from	T)	Maria		
1) Store	etum (1)	Pile	Joseph	[ (a		
(,)						
	Ka:	Ø= 27	2,5			
	$\beta$	$d\phi = 0$				
				5		
		$5/\phi = .$	5 (A5	sumed)		
	11/	,,_ 1				
	1KA =	.42				
	Kp:	φ= z	2.5			
	<i>F</i>	$\beta/\phi = 0$	-> hp	$r_{\rm u} = 3.6$		
		φ=.5 -				
	<u> </u>	p = 3.6	(435) =	2 01		
	<b>5</b>	p - 3.6	(30)	5.01		
	1.7		The second second			
	IKD:	= 3.01				
			1			

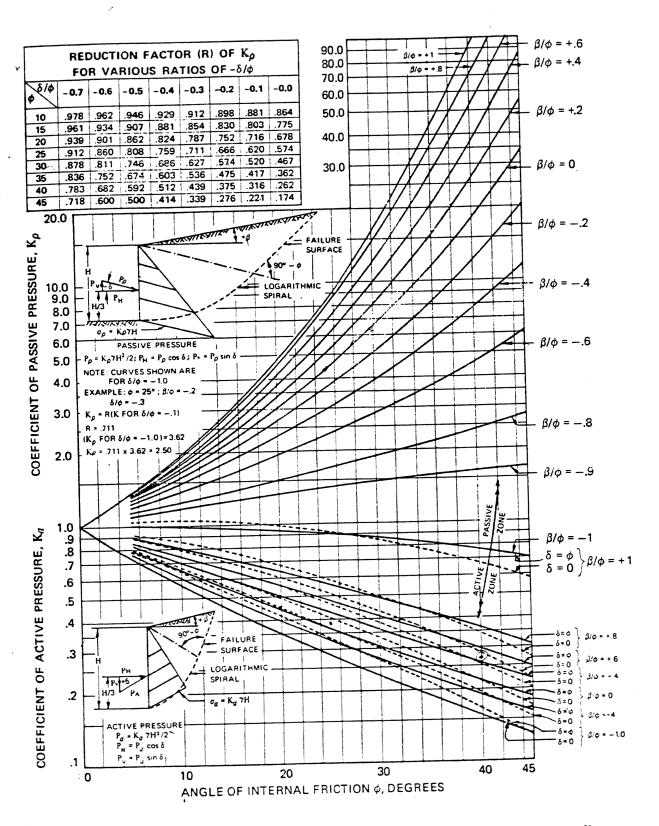



Fig. 5(a) - Active and passive coefficients with wall friction (sloping backfill) (after Caquot and Kerisel²¹)



guerra.					<b>M</b>	[ <del>{</del>		7].			SHEET	4	of
	CLIENT/S	SUBJECT _				GBS C	ESONO	LIMIS		w.c	). NO		
	TASK DE	SCRIPTION								TA	SK NO		
	PREPARI	ED BY			DEPT_		DAT	E			APPRO	VED BY	,
	MATH CH	IECK BY_			DEPT_		DAT	E					
	METHOD	REV. BY _			DEPT _		DAT	E		DEPT.	D	ATE _	
			12	- 1									
		2.\	4	ater	m(Z	)							
		- )		1/					e				
				KA	:	ф	=	28.	5				
										. / .			
					1	1P	= C	)	9	/φ:	- ,5		ļ
					<u></u>	17		-54	7	<u></u>			
						15	A	.34					
				1/	<u> </u>	<b>A</b>	= 2	28.6					
				() F	7	φ	- 2						
					E	3/15	= (	<b>)</b>	6	16	= .5		
Marian Comment					,	14				17			
					Ko	=	5.7	7	R	= .	765		
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				7			<b>-</b> -,	
						$L_{p}$	- C	5.7 (	.76	5) =	4.3	36 <b>\</b>	
					L	٢							
		1							<u></u>				
		3) 6	This	lem	-3	נ							
		/		1/		,			، اسر	)			<u></u>
				KA		ф	=	35.	5				
						3	11	- I	٥	8	/1 -	.5	
						$\mathcal{I}$	φ				1 P =	• >	<u></u>
						TV	=	.20	_ ]				
							4						
				K_	•	d)	= .	35,5	0				
				17		Ţ							
						B/4	) =	ວົ		0/6 =	= ,5		
					. /	, ,				0			
					KP.	=	(1.5			K=	.66	6	
					Υu		•						T
	DEW 10-05-0			<u> </u>		IK	, p =	11.5	(.60	66)	= 7	.66	<b></b>



CLIENT/SUBJECT			W.O. N	O	
TASK DESCRIPTION		and the second	TASK	NO	- (
PREPARED BY	DEPT	DATE	A	PPROVED BY	
MATH CHECK BY	DEPT	DATE			_
METHOD REV. BY	DEPT	DATE	DEPT	DATE	
	ratum	$\bigcirc$			
4.) 50	2				
	Z:	Ø=40	)		
	قر	1/4= 0°	3/4	= .5	
		( FA =	.22		
	Ko:	$\phi = 4$	0		
	P	φ = 0°	70	= .5	
	1Z	$P_{11} = 18.0$	$\mathcal{R}$	= 597	
	<i>(</i> )				
	K,	, = 18.0	(.592) =	10.65	
		137		<del></del>	
		: 1Kp=	= 10.65		
	10 - 6.				
Unit Wee	atto f	507):			
	x = f(	$\langle \mathcal{N} \rangle$			
03/	YT		. A . F	- thus	Sata
	- see F	Appendix	<b>L</b>		
	soil tro	lum	USAT	(Pob)	
	$\mathcal{Q}$		93		
	(1)(M)		121	)	
	<i>%</i>		12	7.5	



0				
SHEEL of	SHEET	8	-4	

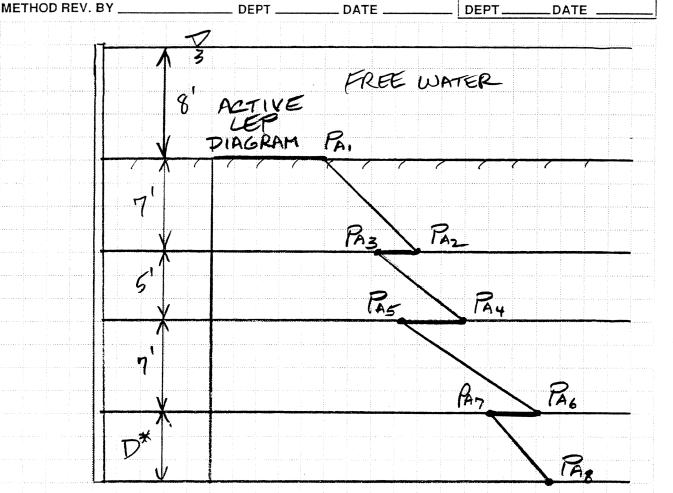
CLIENT/SUBJECT	MANAGERIS DESIGNERS ADNISULTANTS	W.O. NO
TASK DESCRIPTION		TASK NO
PREPARED BY	DEPTDATE	APPROVED BY
MATH CHECK BY	DEPTDATE	
METHOD REV. BY	. DEPT DATE	DEPTDATE
_+/	,, ,	-7.
/ben P =	9 KA = 18x	62.4pg (.42) = 210 ps
		1 9 3 7 7 1 1
		$\rho$
see	- Gurchard	e lood and
	to we of	e load due 8' of free water
Eigene \		
P=F	7 + (93-62.4)	(5')(.42) = 274.3ps
12 1	pcf )	
700-		
Calculate :		
10 _ 1	P(D) - A	(H+D) -> AMB,
7/3 = 1		(1140)
See 2	1	1 735-3
73° 0	sive LEP	Active LEP
	la based	calc based
	n all strata	on all strata
w	thin Destance	wither Destorce
	1) to tollow	(H+D) to tollon
0	of Theoling	of Thatley
where	_; ;	<u> </u>
	7	
	73' / /	*



SHEET ___ of ____

CLIENT/SUBJECT		W.O. NO	)
TASK DESCRIPTION		TASK I	vo
PREPARED BY	_ DEPT DATE	AP	PROVED BY
MATH CHECK BY	_ DEPT DATE		
METHOD REV. BY	_ DEPT DATE	DEPT	DATE
then P(D).	is calculat	PASSIVE LEP DIAGRAM	
(D) 3 (RP4)		Pe 5	
3 Pro /Pro	PP ₃	7' *	
PP3 = 266	-62.4)(2')(4 -8+(108-1	(,36) = 266. (2.4)(5')(4.36	2 psb 3 psb 1260.9 psk 7.66) = 2215.3 psk

RFW 10-05-003/A-5/85


CLIENT/SUBJECT			W.O. N	10
TASK DESCRIPTION			TASK	NO
PREPARED BY	DEPT	DATE	A	PPROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	DATE
Pes = 1	2215,3+ (93-62.4) PB +	(120-62) $=(21)+(109)$ $(120-62.9)$ $=(120-62.9)$	6-62.4)(5' Pg 4)(7')](1	) :
Also, A			,5-62.4) 74.1+	) D* (10.65) 693.3 D*

CLIENT/SUBJECT	 W.O. N	10

TASK DESCRIPTION ______ TASK NO. _____

PREPARED BY ______ DEPT ____ DATE ____ APPROVED BY

MATH CHECK BY _____ DEPT ____ DATE ____



$$P_{A_1} = 9 k_A = (8' \times 62.4 \text{ pg})(.42) = 210 \text{ ps}$$

$$P_{A_2} = 210 + (93 - 62.4)(7')(.42) = 380 \text{ ps}$$

$$P_{A_3} = (6 \times 62.4 + (93 - 62.4)(7')(.34) = 242.6 \text{ ps}$$

$$P_{A_4} = 242.6 + (108 - 62.4)(5')(.34) = 320.1 \text{ ps}$$

$$P_{A_5} = [8 \times 67.4 + (93 - 62.4)(7) + (104 - 67.4)(5)(.26)$$

$$= 244.8 \text{ ps}$$



	10		
SHEET		of	

	MANAGERS	DESIGNERS/CONSULTANTS	St	HEE! of
CLIENT/SUBJECT			W.O. NO	)
TASK DESCRIPTION			TASK I	NO
PREPARED BY	DEPT	DATE	AP	PROVED BY
MATH CHECK BY	DEPT	DATE	***************************************	
METHOD REV. BY	DEPT	DATE	DEPT	DATE
game dansarja ara ja ara jamanjama jamanja matara in and p	× 62.4+ 6 + (120	93-62.4 (7) -62.4 (7) (127.5-6	(7')(:z = 30 ) + (108 (:22) 2.4)(D'	6) 19.6 psf 3-62.4)(5) = 295.8 ps *(-22)
A = P  See pg $z = z$	PP7 -  See pro 7  + 80	$A(H+D)$ $Pa_{0} = \Gamma$	)  295.9  295.9	8 + 14.3 D*  3 + 14.3 D*
Calculate:	P(H+	D) $-A$	t (D	) -> See App I

	11		
SHEET	1 (	of	

CLIENT/SUBJECT			W.O. NO	)	_
TASK DESCRIPTION			TASK I	NO	. (
PREPARED BY	DEPT	DATE	AP	PROVED BY	1
MATH CHECK BY	DEPT				-
METHOD REV. BY	DEPT	DATE	DEPT	DATE	
P(H+D) reference reference PP = 9 PP = 1	in calous to Find by PP valus Kp = (3) 502.6+ 3110.4+(1) [8x62.4+(1) 7211.1+	20-02 $7$ $4$ $62.4$ $62.4$ $63-62.4$ $63-62.4$ $63-62.4$ $63-62.4$ $63-62.4$	as followhere Property (7) (3.01) (7) (3.01) (5) (4.36) (7) + (108 1.1 ps/ 52.4) (7) (7) = 10. (7) + (108- (7) + (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (108- (7) - (	-62.4)(5) -62.4)(5) -62.4)(5) -62.4)(5) -62.4)(5) -62.4)(5) -63.4)(5)	36 P36 P36 P36
			19		
		= 14	f320+	693.3D	* (

	6
MANAGERS DESIGNERS/CONSULTANTS	

	12	
SHEET	of	

	MANAGERS DESIGNA	RS/CONSULTANTS	SHE	ET of
CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	)
PREPARED BY	_ DEPT	DATE	APPF	ROVED BY
MATH CHECK BY	_ DEPT	DATE		
METHOD REV. BY	_ DEPT	DATE	DEPT	DATE
A (D) is co reference to F. are replaced	ladel ig on p by Par	as follos a 7 who alues c	es with	H., value.
KA values!  PA = (93-  PA = [93-	6Z.4 \ Z'	)(,42) =	25.7	P&
$P_{A3} = 20.$ $P_{A4} = \sum_{i=1}^{6} G_{i}$	8+ (108-	· 62.4)(5')	(34) = ° 62.4)(5)	78.3 pg
$P_{AS} = 75.$ $P_{i} = \sqrt{6}$			(.26) =	= 180.0 pd
$P_{A6} = \int_{-63}^{63}$				
$PA_{\eta} = 152$	2.3+(12	7.5-62.1 =	f)(D*) 152.3	(.22) + 14.3 D*
Specific Z RFW 10-05-000 A 585	P(H+I	)-A(	D)= " See #	PP8 - PA7 1 1 911 see

WESTER
--------

	17	
SHEET	1 of	

	\\\L <del>[</del> 5\		SHEET	<u>/→</u> of
CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPROV	ED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTDA	TE
$P_4 = 0$	- 14320+	693.3 D*	]-[/52.3.	+ 14.3D*
	P4	= 14167.	7+679	D*
Now determine			see pg 2)	
P2				
P ₂	(Kpo-KA0)	$(\zeta_0)$		
(Kpc)	- KAD)(Y	2		
:. P	$l = P_2 - l$	(KB-KAD	)(R) (S)	)
1	= 27	4.3 psf-(	3.014Z\93	7-62.4)(Z')
then Pz	- (Kpg-	= (15.8 KAD)(X)	$) \times' = 0$ $08-62.4) \times'$ $08-62.4) \times'$	) psf
115.	6 ph - (4	(1634)	08-62,4) X'	= 0
∓ F1v 10-05-003 W-5 %5	X'= .63	125'~	within resempt	Frotum D

WESTON
--------

SHEET ( of ____

CLIENT/SUBJECT APPROVED BY then SEH = 0 1 (811.2 pd) (13') + (811.2 pd) (2'+5'+7') + (811.2 pd) D*  $+5'\left(\frac{210+274.3}{2}\right)+\frac{1}{2}\left(\frac{2'}{274.3}-115.8\right)+\left(115.8\right)$ + \frac{1}{2}\left[\big(7078.3 + 679 D*) + \left(14167.7 + 679 D*)\right] see jag 2 5272,8+ 11356.8+ 811.2 D*+ 1210.8+ 158.5+ 231.6 +36.5-3539.2y-339.5D*Y + 106232+6792D*=0 Egn is & (D*, Z + y); eliminate variable roting that (see pg Z): D*+7+5+2= 2+.63'+4

WESTON

	10		
SHEET	$\frac{(}{}$	of	

			SHEET	01
CLIENT/SUBJECT			W.O. NO	·
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPRO	OVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTD	ATE
	5			
	Y = D* +	(1,37		
	1			
Lub in a	bove egn.	+ Ginfly	gy:	
18267+	8112D*- 3	3539.2 (D	*+4.37	
	X ( TX	D) - 101-	221	7997
一 557,5]	D*(D*+11.3	7)7 10,60		olled
	5			= 0
	<u> </u>	_		
- 339.5]	D*2-6588	11 D*+	10,623	2 (
+	679ZD*	- 21,973.	7 = 0	<b>)</b>
	<	- P - P	2	
	$\checkmark$	solve fe		
7 (1063	23 + 679D	*) = 339.	5D*2+	-6588.1D*
	·		21973	$\Gamma$
		+	211/3	· • /
	5			
	$\checkmark$			
	7	٧.		
17==	339,5D*2+	6588.1D*	+21973.	.7
		+ 679 I		
) (		1		1

. 교육 : 구소,스회,스크리 (Jaly P WESTIGN.

SHEET 6 of ___

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPROVE	D BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTDATI	E
J		0		
The is one a	egn in Z	_ unbrow	rs; reed ?	2200
$\leq M$	- 0			
2 M ROTTOM SHEETS				
5272.8 (D*	+ 14+13/	2) + 1139	56.8/D*+14	<u>(</u> )
) = 1 = 0 ( D		3)	Z	- )
-*/~	× /	1/		
+ 811.2 D*(D	2 ) + (121	0.5/DT-	+14+5)	
	<u>.</u> www.	_	,	
+ (58.5/D*+	1-11-7/-	11 221	1/2*1-	
+ (50.5/ 1)+	-127 = (2	1)+ 231	, b (D" + 12+	乞)
		· ·		
+ 36,5 (D*+)	7'+ (5-63)	+ .63/2		
	, ( )	(3)	)	
	* ()	( * \)	,	
- 3539.2 (D	~+ 11.37 )	D+11.37		
	′ \			
- 339.5D*	D* 11.35	1/13+11.3	7)	
	+ 7 (11-)	1 3	_ /	
			* (-)	
+ (0623 Z	(三)+	679ZD	(学)=	$\bigcirc$
	(3)			
	)	Simplif		
	<b>4</b> /	Simple		
	V	1 0	<b>\1</b>	

WESTEN.

	17		
SHEET	1 (	of	

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE		
MATH CHECK BY				
METHOD REV. BY	DEPT	DATE	DEPTDATE	
527z, &D*+				
+ 79497.6+	405. D	* + 1210	$\times 8D^* + 169$	151.2
+ 3027+ 15	8,8D*+	1902+	24.3+23/	6 D*
+ 2779.2 +	231.6+	36,5D*	+285.5+	159.5
+ 15/3 - (39	539,ZD*	+ 40,24	(0.7) D*+11	,37)
-(339.5)			\ <b>Z</b>	
+ 35412	+ 22	4.32	D* = 0	
	\$			
201,698.2+	(8267 I	D*+40	5.6D*2	
- (3539,ZI	D*+ 40	240.7)	D*+11.37	)
-(339.5D*	·2 十 386	0.1 D*	D*+11.37	
+ 354122	+ 226	.3 Z D	* = 0	

Egn B

	18		
SHEET		of	

CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE
Egns A + ( Solved gener	B) are -	f(z, D*)	only + can be
Trial	#1: A	soure I	)* = Z.0'
	2 = 3	05'->	EgnA
			5661 # O
		of Gin	ce + assumed * is too low
Trial	#z: A	sume I	)*=3.0'
	Z= :	3.54'—	> EgnA
LH	5 Egn	B = -	685.0 % 0
			OK, Soln!
		regulion is gling	e Shalithy ettly conservative

SHEET ______ of ____

			51	TEE! 0ī
CLIENT/SUBJECT			W.O. NO	).
TASK DESCRIPTION			TASK I	١٥
PREPARED BY	DEPT	DATE	AP	PROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	DATE
i D		+ 14'		pg2)
	econnordan > 1.4;	LFS o	on Drue	
. b.	Drues =	17'(1.2	-)= 20	o.4 '
to lead the of pulsar	enbednes desth telows escavat botton	t + 5' dest	the contraction	vater bt.
	: Us	e 35's tus will	long ?	sheets le FS of
dnort = 39	5- (5+9	g') = -	22'	
4	FG=	<u> 22'</u> <u> 17'</u> =	= 1.29	> 1.2

RFW 16-05-003 A-5-85

WESTON.

SHEET ZO of

			5	HEEI 2 of
CLIENT/SUBJECT			W.O. NO	D
TASK DESCRIPTION			TASK	NO
PREPARED BY	DEPT	DATE	AF	PROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	DATE
If it is Heats that	deserd ? were signavation of sheets	to use of ed for Earth (	the 30	Long Cap
		area	ward de as a significant	figurality for and
Can only  deep escavateo  tere localized  1.) Only  suns  2) Localized  with	allow 30 referration complete ace elev controlled c	de both a are: a devin aleon C en escara confacted	to be us for sede to be low took are	ed for a mails if water in river backfilled mediately

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	_ DEPT	DATE	APPRO	VED BY
MATH CHECK BY	_ DEPT	DATE		
METHOD REV. BY	_ DEPT	DATE	DEPTD	ATE
Determine der that this occur distorce "a" &	vation with	of zero she that of stra	tun (see	- jag 2):
1 (811.2 psf) (13')+				
$+5'\left(\frac{210+274.3}{2}\right)$	3)+ 之	(2')(274.3.	4.37'	115.8pg (2'
+ 1 (.63') (115.8 psf	)一点	(401.1 psf)	(5/13)	
- 7'(801.1+37)	84.8	a (3784.8)	7 = 13784.8+ Z	a(127.5-62.4)(2°
			= 0	
5272.8+11356.8+	411.Za	+ 1210.8+	158.5+	231.6
+ 36.5 - 1750.	4 - 16,	050 — a	3784.8+	339.5a) = 0
466.6 + 811.7	2a-3	784.8a-	339,5	$a^2 = 0$
	\$			

WESTEN.

	ZZ	
SHEET	of	

CLIENT/SUBJECT			W.O. NO	
TASK DESCRIPTION			TASK NO	
PREPARED BY	DEPT	DATE	APPRO	VED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPTD	ATE
339.5 a	+ 2973	.6 - 4	66.6 = 0	
	/	n -A-	Al	
	) qu	adralic	egn with 1-339.5	
		a= -	H 339.5	
			+ 2973.6	
		and the second second second	-466.6	
	1			
a = -	りました	-4ac		
<del>-</del>	70			
	3			
11 (I	-		12 /	
a =	-2973.0	6 ± 1/2	(973.6) - 4(3)	39.5/-466.6)
		7/	339,5)	
	/	2(	337,7	
	5	0. + ~	nt in val	in _
	4 67	ag ( )h	not is val	
	0 - 0	, ,	- 1	0
	a = .	19 2	3.0	Soen
	"a" = .		×	
		_		
10 Clar	8/2000 6	Lan A	neuro 15	'Relow
1.0.	- 1	+++	(3) de (11)	
the inte	space of	gorallen		
1.e. Eles the inte (see pg	2).			
10				

CLIENT/SUBJECT			W.O. N	0
TASK DESCRIPTION _			TASK	NO
PREPARED BY	DEPT	DATE	AI	PPROVED BY
MATH CHECK BY	DEPT	DATE		
METHOD REV. BY	DEPT	DATE	DEPT	DATE
	E Malen			
	5+7+5+2			
+ 811.261	5/(.15/2)+	1210.8	15+7+5	+2'+5/2)
+ 158.5	15+7+5+3	=(z')+	231.6 (.19	5+7+5+2
+ 36.5(.15+	7'+ (5'63)	+ = (.63)	)-1750.4	(15+7+4.37)
				01.1) (.15+ 7/3)
-(3784.8)	(.15) (.15/2)	一~(15)	[.15(127.5.	-62.4)(10.65-22)
	= 97458.9	•		
·	+ 3045.5-			
- 20469	3.1-259	33.3 —	42.6-	4

= 142,937,8 ft-lb/ft

WESTON

SHEET ____ of ___

			SHEET of
CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	_ APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE
: SREQD >	(142		et ) (12 in/pe) 0,000 psi)
Speps	, <b>&gt;</b>	52.78 {	
		(SACT =	Jo Good 48.4 in 1/82
			solle overstress i of above tion:
SREAD?	> (147	1.10 (.65	10 (12 in/g) (50,000 psi)
Sp	lead >	= 47.98	3 in 3/fet
A-	Z-26	W CK was	SACT = 48.4 in/g

WESTER!

SHEET of ___

CLIENT/SUBJECT	`		W 0 N0
CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE
from AS yield stre	ofth] steriloch	72, Grad al, of or Purcha	ranufactured e 50 [ (e. 50 Ksi newt have fort dequate water ased largth
		_	$\overline{}$

WC Ph.D., P.E.
3/11/02

# **PIPING ANALYSIS**

		JUN 7	_	/
CLIENT/SUBJECT	- Vittslie	DESIGNERS/CONSULTANTS	_	HEET of
TASK DESCRIPTION	et Pla	Danian	W.O. N	
	D DEPT 12	716 -1		NO
MATH CHECK BY	DEPT (2)	DATE 3/5 DATE 3/6	1/02 AF	PROVED BY
**************************************		•	102	
METHOD REV. BY	DEPT	DATE	DEPT	DATE
	PIPIA)	2 ANAL	Vele	
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 Morre	7913	
BANKERNIN	• (1)	- Di -		<b>—</b> . 0
BACKGROUND	_ · SHEE	1 PILE	DESIGN F	-012
CANTIL	EVERED	3HEETING	> TO BE	PLACED
ACONO	ACIGNME	NT OF Q	RIVER	fas been
COMPL	ETED AS	POCUME	NTED IN	A SEPARATE
7510	F CALCULA	1710N3.	A SEMAR	ATE
ZONCE	RN RELAT	ED 70 71	HIS PROPE	SED
	RUCTION 15			
SHADI	ENT WHICH	WILL BE	GENERAT	ED BY
7,46	WATER HE	HI DIFFE	RENTIAL	CREATED
DEION	THE TOB	THE ALL	TED AKE	A (3
	TERED. 7			
ne TH	ETED TO E GRANUU	BEIERIA		17/10G
DETI	te excavat	AND AND	2 AT THE	BASE
A 26	sult of 1	ins hear	DIESCACIO	UTIQI
	, , , , , , , , , , , , , , , , , , , ,	nis a en-	· virrecei	o //nc /
SHEET PILE	DESIGN T	DETAILS	A0 = -	
	7	9111.03	/117e .	
6-11 A	3 /		不	
STING 1	3'	· · · · · · · · · · · · · · · · · · ·	(w	LAVATED
TOM		mi mme van <b>∩</b> va Si Si		FANNEL
The state of the s	/ / /	1345	1 E	FOTTOM ELEV
		/ <del>/ / / /</del>	7 7	
	30			
	10NG	(6',		
	SHEEKS	19 4	(7)	
	711			
	Commence of the Commence of th		e e e e e e e e e e e e e e e e e e e	
	<b>V</b>			



	2		
SHEET		of	

CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT	DATE	APPROVED BY
MATH CHECK BY	DEPT	DATE	
METHOD REV. BY	DEPT	DATE	DEPTDATE

# ANALYTICAL MODEL IS AS FOLLOWS:

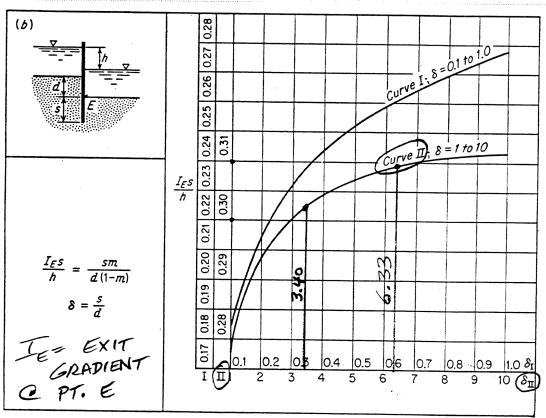



Fig. 5-9. (After Khosla, Bose, and Taylor [69].)

REF: HARR, M.E.; "GROUNDWATER & SEEPAGE"; 1962

FOR THIS DESIGN:

$$S = 19' + 17'$$
 $d = 3' + 5'$ 
 $h = 11' + 13'$ 

WESTON.

SHEET 3 of _

CLIENT/SUBJECT _ W.O. NO. _ TASK DESCRIPTION TASK NO. __ PREPARED BY ______ DEPT DATE APPROVED BY METHOD REV. BY _____ DEPT ____ DATE __  $(d=3'cage): 6=\frac{5}{1}=\frac{19'}{3'}=6.33$ USE CURVE I ON FIG. 5.9 (S=1->10) : IES = .3095 /  $I_{e} = .3095 h = .3095 (11')$ I= - 179  $(d=5'case): S=\frac{5}{1}=\frac{17}{5}=3.40$ USE CURVE I ON FIG. 5.9 (8=1->10) : <u>IES</u> = .3020

$$I_{\epsilon} = .3020 \, h = .3020 \, (13') = .231$$

CLIENT/SUBJECT			W.O. N	10	
TASK DESCRIPTION			TASK	TASK NO	
PREPARED BY	DEPT	_ DEPT DATE		PPROVED BY	
MATH CHECK BY	DEPT	DATE			
METHOD REV. BY	DEPT	DATE	DEPT	DATE	
THEN	FS PIPING		cr Cr		
WHERE	Tor =	CRITICAL WHICH P	- GRADII IPING OC	ant @ curs	
Top	= <u>G</u> 5	-1 -e	CSEE 1 APP	ATTACHED)	
W	Here 6	55 = 5PE 501	TUAC GI Le Bas	RAVITY OF SE OF EXCAY	
	·	2 = VOI	D RATIO BASE OF	OF SOIL, EXCAY.	
FROM I	>15cuss10	N IN AF	PP. A:		
	Icr ?	z 1,0	FOR TY + E V GRANU	IPICAL GS ALUES FOR ILAR SOILS	
:. FS					
FSPIP	ING (d=5	(1) = (.0)	)/.231 =	4.33	

# WESTEN!

	5		
SHEET	$\stackrel{\smile}{-}$	of	-

CLIENT/SUBJECT			W.O. NO
TASK DESCRIPTION			TASK NO
PREPARED BY	DEPT _	DATE	APPROVED BY
MATH CHECK BY	DEPT _	DATE	
METHOD REV. BY	DEPT _	DATE	DEPTDATE

AS NOTED ON PG. A-4 OF APPENDIX A, A MIN. FS PIPING OF 4 TO S 15 DESIRABLE.

:. FSPIPING (d=3') NOK

FSPIPING (d=5') NOK BUT

MARGINAL

PIPING FAILURE OF THE SOILS AT THE BASE OF THE EXCAVATED AREA NEAR THE SHEET PLUNG DUE TO THE UPWARD FLOW GRADIENT GENERATED FROM THE DIFFERENTIAL HEAD BETWEEN THE WATER SURFACE IN THE STREAM & THE DEWATERED EXCAVATED AREA SHOULD NOT OCCUR.

W.L. Dentsch!

Ph.D. P.E.

3/5/02

# APPENDIX A

 $(\Delta n/\Delta s=1)$  is most sensitive to visual inspection) which reduce to perfect squares in the limit as the number of lines is increased, then one has obtained an unique solution of Laplace's equation for the flow region from which the quantity of seepage, seepage pressures, etc., can be had easily. For example, designating  $N_f$  as the number of flow channels and  $N_e$  as the number of equipotential drops along each of the channels, we have immediately from Eq. (3) (with  $\Delta n/\Delta s=1$ ) for the quantity of seepage

$$q = N_f k \, \Delta \bar{q} = \frac{N_f}{N_c} \, kh \tag{4}$$

where  $h=N_{\epsilon}\Delta h$  is the total loss in head. In Fig. 1-15 we see that  $N_f$  equals about 5 and  $N_{\epsilon}$  equals 16.

The following procedure is suggested for the construction of a flow net:

- 1. Draw the boundaries of the flow region to scale so that all equipotential lines and streamlines that are drawn can be terminated on these boundaries.
- 2. Sketch lightly three or four streamlines, keeping in mind that they are only a few of the infinite number of curves that must provide a smooth transition between the boundary streamlines. As an aid in the spacing of these lines, it should be noted that the distance between adjacent streamlines increases in the direction of the larger radius of curvature.
- 3. Sketch the equipotential lines, bearing in mind that they must intersect all streamlines, including the boundary streamlines, at right angles and that the enclosed figures must be squares.*
- 4. Adjust the locations of the streamlines and the equipotential lines to satisfy the requirements of step 3. This is a trial-and-error process with the amount of correction being dependent upon the position of the initial streamlines. The speed with which a successful flow net can be drawn is highly contingent on the experience and judgement of the individual. In this regard, the beginner will find the suggestions in A. Casagrande's paper [14] to be of particular assistance.
- 5. As a final check on the accuracy of the flow net, draw the diagonals of the squares. These should also form smooth curves which intersect each other at right angles.

## 1-13. Seepage Force and Critical Gradient

By virtue of the viscous friction exerted on water flowing through the soil pores, an energy transfer is effected between the water and the soil. The measure of this transfer we found to be the head loss ( $\Delta h$  of Fig. 1-5) between the points under consideration ( $\Delta s$ ). The force corresponding to this energy transfer is called the *seepage force*. It is this seepage force

^{*} See previous footnote.

....

電

ark ar

25

Taking the gradient of both sides of this equation we obtain

$$\frac{1}{\gamma_w} \operatorname{grad} p = \operatorname{grad} h - \mathbf{j} \tag{6}$$

where j is a unit vector, as before. Multiplying Eq. (6) by  $\gamma_w$  and replacing grad h by -i, the hydraulic gradient, we have the vector equation

$$\operatorname{grad} p = -i\gamma_w - \mathbf{j}\gamma_w \tag{7}$$

Equation (7) is plotted as triangle OO'M in Fig. 1-16.*  $i\gamma_w(OM)$  represents the seepage force per unit volume, the direction of which is normal to the equipotentials; R(O''M) represents the magnitude and direction of the resultant force (per unit volume) acting within the pore water at a point in the soil.

For R = 0, we see immediately from Fig. 1-16 that a quick condition is incipient if

$$i_{c} = \frac{S_{\varepsilon} - 1}{1 + e} = \frac{\gamma'_{m}}{\gamma_{w}} \tag{8}$$

Substituting typical values of  $S_e = 2.65$  (quartz sand) and e = 0.65 (for sand,  $0.57 \le e \le 0.95$ ) we see that as an average value the critical gradient can be taken as

$$i_{\rm cr} \approx 1$$
 (9)

When information is lacking as to the specific gravity and void ratio of the soil, the critical gradient is generally taken as unity [Eq. (9)].

Equations (8) and (9) provide the basis for stability determinations of the factor of safety against a quick condition (called piping). In essence the procedure requires the determination of the maximum hydraulic gradient along the discharge boundary, called the exit gradient, which will yield the minimum resultant force  $(R_{\min})$  at this boundary. This can be done analytically, as will be demonstrated later, or graphically from flow nets, after a method by Harza [54]. In the graphical method, the gradients along the discharge boundary are taken as the macrogradient across the contiguous squares of the flow net. As the gradients along this boundary vary inversely with the distance between adjacent equipotential lines, it is evident that the maximum exit gradient is located where the vertical projection of this distance is a minimum, such as at the toe of the dam (point C) in Fig. 1-15. For example, the head lost in the final square of Fig. 1-15 is one-sixteenth of the total head loss of 16 ft, or 1 ft, and, as this loss occurs in a vertical distance of approximately 4 ft, the exit gradient at point C is approximately 0.25. Once the magnitude of the exit gradient has been found, the factor of safety with respect to piping is then ascertained by comparing this gradient with the critical gradient

^{*} This is Risenkampf's triangle of filtration [122].

of Eqs. (8) or (9). For example, the factor of safety with respect to piping for the flow condition of Fig. 1-15 is 1.0/0.25 or 4.0. Factors of safety of 4 to 5 are generally considered reasonable for the graphical method of analysis.

### 1-14. Anisotropy

If the coefficient of permeability is independent of the direction of the velocity, the soil is said to be an isotropic flow medium. Moreover, if the soil has the same coefficient of permeability at all points within the region of flow, the soil is said to be homogeneous and isotropic. If the coefficient of permeability is dependent on the direction of the velocity and if this directional dependence is the same at all points of the flow region, the soil is said to be homogeneous and anisotropic. In homogeneous and anisotropic soils the coefficient of permeability is dependent on the direction of the velocity but independent of the space coordinates.

Most soils are anisotropic to some degree. Sedimentary soils often exhibit thin alternating layers. Stratification may result from particle orientation. Generally, in homogeneous natural deposits, the coefficient of permeability in the horizontal direction is greater than that in the vertical. One exception, worthy of special note, is loess, where, because of the vertical structure, the opposite is true.

Although Darcy's law was obtained initially from considerations of one-dimensional macroscopic flow only, in Sec. 1-9, upon the introduction of the velocity potential  $\phi$ , it was demonstrated that the vectorial generalization of Darcy's law was valid for an isotropic flow medium. To provide a theoretical framework for any flow system it is necessary that this generalization take into account the directional dependence of the coefficient of permeability. Thus, it is generally assumed that

$$\nabla_n = -k_n \operatorname{grad}_n h \tag{1}$$

where  $k_n$  is the coefficient of permeability in the n direction and  $\mathbf{v}_n$  and  $\operatorname{grad}_n h$  are the components of the velocity and the hydraulic gradient in the same direction. For two-dimensional flow in the xy plane the velocity components in the x and y direction are

$$u = -k_x \operatorname{grad}_x h = -k_x \frac{\partial h}{\partial x}$$

$$v = -k_y \operatorname{grad}_y h = -k_y \frac{\partial h}{\partial y}$$
(2)

The work of this section will be divided into four parts: (1) It will be shown that a stratified medium of thin homogeneous and isotropic layers can be converted into an equivalent single homogeneous and isotropic layer. (2) It will be shown that the square root of the direc-